Abstract
Objective
Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin-3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI).
Methods
Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1(+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4×105 OEG transfected with pcDNA3.1(+)-NT3 or pcDNA3.1(+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted.
Results
NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1(+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting.
Conclusion
Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT-3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
Keywords: functional recovery, gene therapy, neurotrophin-3, olfactory ensheathing glia, regeneration, spinal cord injury, non-viral vectors
摘要
目的
将神经营养素-3 (neurotrophin-3, NT-3) 基因转染的탡쟊细胞 (olfactory ensheathing glia, OEG) 移植到脊쯨损伤大鼠体内, 以期促进大鼠탘脊쯨损伤的恢复.
方法
将自行构建的质粒pcDNA3.1(+)-NT3, 应用脂质体介导的方法导入体外培养的OEG, 将其移植入急性脊쯨损伤大鼠体内, 连续观察12 周, 与接受单纯OEG 移植和空白质粒转染OEG移植及无OEG移植的脊쯨损伤大鼠进行比较.
结果
pcDNA3.1(+)-NT3转染的OEG移植后能在体内长期存活, 表达NT-3 基因, 并较对照组更能促进脊쯨损伤区훡突的再生和后肢功能的恢复.
结论
OEG 是脊쯨损伤基因治疗较好的受体细胞. 转染OEG移植后可以在体内较长时间存活. 能明显促进急性脊쯨듬伤神经纤维再生和功能恢复的作用, 为基因修饰탡 쟊细胞在脊쯨损伤治疗的应用提供了实验和理论依据.
关键词: 功能恢复, 基因治疗, 神经营养素-3, 탡쟊细胞, 再生, 脊쯨损伤, 非病毒载体
References
- [1].Franklin R.J., Barnett S.C. Olfactory ensheathing cells and CNS regeneration: the smell of success? Neuron. 2000;28:15–18. doi: 10.1016/S0896-6273(00)00080-5. [DOI] [PubMed] [Google Scholar]
- [2].Barnett S.C., Alexander C.L., Iwashita Y., Gilson J.M., Crowther J., Clark L., et al. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain. 2000;123:1581–1588. doi: 10.1093/brain/123.8.1581. [DOI] [PubMed] [Google Scholar]
- [3].Plant G.W., Ramon-Cueto A., Bunge M.B. Axonal Regeneration in the Central Nervous System. New York: Marcel Dekker; 2000. pp. 529–561. [Google Scholar]
- [4].Doucette R. Glial influences on axonal growth in the primary olfactory system. Glia. 1990;3:433–449. doi: 10.1002/glia.440030602. [DOI] [PubMed] [Google Scholar]
- [5].Ramon-Cueto A., Avila J. Olfactory ensheathing glia: properties and function. Brain Res Bull. 1998;46:175–187. doi: 10.1016/S0361-9230(97)00463-2. [DOI] [PubMed] [Google Scholar]
- [6].Li Y., Field P.M., Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997;277:2000–2002. doi: 10.1126/science.277.5334.2000. [DOI] [PubMed] [Google Scholar]
- [7].Li Y., Field P.M., Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci. 1998;18:10514–10524. doi: 10.1523/JNEUROSCI.18-24-10514.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Ramón-Cueto A., Cordero M.I., Santos-Benito F.F., Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25:425–435. doi: 10.1016/S0896-6273(00)80905-8. [DOI] [PubMed] [Google Scholar]
- [9].Lu J., Féron F., Ho S.M., Mackay-Sim A., Waite P.M. Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res. 2001;889:344–357. doi: 10.1016/S0006-8993(00)03235-2. [DOI] [PubMed] [Google Scholar]
- [10].Gudiño-Cabrera G., Pastor A.M., de la Cruz R.R., Delgado-García J.M., Nieto-Sampedro M. Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS. Neuroreport. 2000;11:467–471. doi: 10.1097/00001756-200002280-00008. [DOI] [PubMed] [Google Scholar]
- [11].Boruch A.V., Conners J.J., Pipitone M., Deadwyler G., Storer P.D., Devries G.H., et al. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia. 2001;33:225–229. doi: 10.1002/1098-1136(200103)33:3<225::AID-GLIA1021>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- [12].Woodhall E., West A.K., Chuah M.I. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res. Mol. Brain Res. 2001;88:203–213. doi: 10.1016/S0169-328X(01)00044-4. [DOI] [PubMed] [Google Scholar]
- [13].McTigue D.M., Horner P.J., Stokes B.T., Gage F.H. Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci. 1998;18:5354–5365. doi: 10.1523/JNEUROSCI.18-14-05354.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Wang X.Z., Sun T.S. The expression and analysis of recombinant eukaryotic expression plasmid of rat neurotrophin 3. US Chin Int J Traumatol. 2004;3:1–4. [Google Scholar]
- [15].Yan H., Bunge M.B., Wood P.M., Plant G.W. Mitogenic response of adult rat olfactory ensheathing glia to four growth factors. Glia. 2001;33:334–342. doi: 10.1002/1098-1136(20010315)33:4<334::AID-GLIA1032>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- [16].Ruitenberg M.J., Plant G.W., Christensen C.L., Blits B., Niclou S.P., Harvey A.R., et al. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Ther. 2002;9:135–146. doi: 10.1038/sj.gt.3301626. [DOI] [PubMed] [Google Scholar]
- [17].Gruner J.A. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma. 1992;9:123–128. doi: 10.1089/neu.1992.9.123. [DOI] [PubMed] [Google Scholar]
- [18].Basso D.M., Beattie M.S., Bresnahan J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weightdrop device versus transection. Exp Neurol. 1996;139:244–256. doi: 10.1006/exnr.1996.0098. [DOI] [PubMed] [Google Scholar]
- [19].Kostarelos K., Miller A.D. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic nonviral vectors. Chem Soc Rev. 2005;34:970–994. doi: 10.1039/b307062j. [DOI] [PubMed] [Google Scholar]
- [20].Fawcett J.W., Asher R.A. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377–391. doi: 10.1016/S0361-9230(99)00072-6. [DOI] [PubMed] [Google Scholar]
- [21].Schnell L., Schneider R., Kolbeck R., Barde Y.A., Schwab M.E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after spinal cord lesion. Nature. 1994;367:170–173. doi: 10.1038/367170a0. [DOI] [PubMed] [Google Scholar]
- [22].Ramon-Cueto A., Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994;127:232–244. doi: 10.1006/exnr.1994.1099. [DOI] [PubMed] [Google Scholar]
- [23].Navarro X., Valero A., Gudiño G., Forés J., Rodríguez F.J., Verdú E., et al. Ensheathing glia transplants promote dorsal root regeneration and spinal reflex restitution after multiple lumbar rhizotomy. Ann Neurol. 1999;45:207–215. doi: 10.1002/1531-8249(199902)45:2<207::AID-ANA11>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- [24].Ramon-Cueto A., Plant G.W., Avila J., Bunge M.B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci. 1998;18:3803–3815. doi: 10.1523/JNEUROSCI.18-10-03803.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Lu J., Féron F., Mackay-Sim A., Waite P.M. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain. 2002;125:14–21. doi: 10.1093/brain/awf014. [DOI] [PubMed] [Google Scholar]
- [26].Takami T., Oudega M., Bates M.L., Wood P.M., Kleitman N., Bunge M.B. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002;22:6670–6681. doi: 10.1523/JNEUROSCI.22-15-06670.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Ruitenberg M.J., Plant G.W., Hamers F.P., Wortel J., Blits B., Dijkhuizen P.A., et al. Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord. J Neurosci. 2003;23:7045–7058. doi: 10.1523/JNEUROSCI.23-18-07045.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Bunge M.B. Bridging areas of injury in the spinal cord. Neuroscientist. 2001;7:325–339. doi: 10.1177/107385840100700409. [DOI] [PubMed] [Google Scholar]
- [29].Blits B., Boer G.J., Verhaagen J. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. 2002;11:593–613. [PubMed] [Google Scholar]