Abstract
Objective
To study the effects of intranigral injection of different doses of CuSO4·5H2O on dopaminergic neuron in the nigrostriatal system of rats.
Methods
Wistar rats were divided into four groups, including control group, 10 nmol, 50 nmol and 200 nmol copper injected into left substantia nigra (SN) groups. Seven days after the intranigral injection of copper, dopamine (DA) contents in the striatum (Str) were measured by high performance lipid chromotophotography (HPLC); the density of tyrosine hydroxylase (TH) positive axons in the Str was measured by TH staining method; TH and Caspase-3 mRNA expression in the SN were measured by semi-quantitative RT-PCR. We detected the activity of superoxide dismutase (SOD) in the lesioned midbrain of rats using biochemical methods.
Results
DA and its metabolites contents had no significant difference between control group and low dose (10 nmol) copper group. But from 50 nmol copper group, DA contents in the lesioned sides were reduced with the increase in the copper doses injected, showing a significant linear correlation (F = 34.16, P < 0.01). In the 50 nmol copper group, TH positive axons in the Str decreased compared with those of the control and unlesioned sides (F = 121.9, P < 0.01). In the 50 nmol copper group, TH mRNA expression decreased (t =3.12, P < 0.01) while Caspase-3 mRNA expression increased (t = 8.96, P < 0.01) in the SN compared with the control. SOD activity decreased in the midbrain of rats treated with 50 nmol copper compared with that of the control (t = 2.33, P < 0.01).
Conclusion
Copper could induce damage of dopaminergic neurons in the SN of rats through destroying antioxidant defenses and promoting apoptosis.
Keywords: copper, substantia nigra, dopamine, rats
摘要
目的
探讨黑质(substantia nigra, SN)内注射不同剂量的CuSO4·5H2O对大鼠黑质纹状体系统多巴胺能神经元的影响.
方法
实验用Wistar 大鼠, 分成对照组和左侧SN 内分别注射10 nmol、 50 nmol、 200 nmol CuSO4 组, 7 天后采用高效液相色谱法(high performance lipid chromotophotography, HPLC)检测纹状体内多巴胺(dopamine, DA)及其代谢产物的含量; 酪氨酸羟化酶(tyrosine hydroxylase, TH)免疫组织化学法检测纹状体内TH免疫阳性纤维的改变; 半定量RT-PCR法检测黑质内TH, Caspase-3 mRNA 的表达量; 用生化试剂盒分析大鼠中脑内超氧化物岐化酶(superoxide dismutase, SOD)活性的改变.
结果
在10 nmol CuSO4 注射组中, DA及其代谢产物的含量与对照组相比没有统计学差别. 但是从50 nmol 组开始, 损毁侧纹状体内DA 含量随注射CuSO4 剂量的增加而逐渐减少, 显示出明显的剂量依赖关系(F = 34.16, P < 0.01). 注射50 nmol CuSO4组大鼠纹状体内TH免疫阳性纤维明显少于对照组和未损毁侧(F = 121.9, P < 0.01). 注射50 nmol CuSO4组大鼠SN内TH mRNA的表达与对照组相比下降(t = 3.12, P < 0.01), 但Caspase-3 mRNA的表达量与对照组相比却明显增加(t = 8.96, P < 0.01). 在注射50 nmol CuSO4组中, 大鼠损伤侧中脑内SOD的活性与对照组相比下降(t = 2.33, P < 0.01).
结论
铜离子可以导致大鼠黑质内多巴胺能神经元的损伤, 该损伤作用可能是通过破坏抗氧化保护系统和促进细胞凋亡而实现的.
关键词: 铜, 黑质, 多巴胺, 大鼠
References
- [1].Letelier M.E., Lepe A.M., Faúndez M., Salazar J., Marń R., Aracena P., et al. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact. 2005;151:71–82. doi: 10.1016/j.cbi.2004.12.004. [DOI] [PubMed] [Google Scholar]
- [2].Bush A.I. Metals and neuroscience. Curr Opin Chem Biol. 2000;4:184–191. doi: 10.1016/S1367-5931(99)00073-3. [DOI] [PubMed] [Google Scholar]
- [3].Levenson C.W. Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav. 2005;86:399–406. doi: 10.1016/j.physbeh.2005.08.010. [DOI] [PubMed] [Google Scholar]
- [4].Armstrong C., Leong W., Lees G.J. Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu), iron (Fe) and zinc in the hippocampus. Brain Res. 2001;892:51–62. doi: 10.1016/S0006-8993(00)03195-4. [DOI] [PubMed] [Google Scholar]
- [5].Horning M.S., Blakemore L.J., Trombley P.Q. Endogenous mechanisms of neuroprotection: role of zinc, copper and carnosine. Brain Res. 2000;852:56–61. doi: 10.1016/S0006-8993(99)02215-5. [DOI] [PubMed] [Google Scholar]
- [6].Linnebank M., Lutz H., Jarre E., Vielhaber S., Noelker C., Struys E., et al. Binding of copper is a mechanism of homocysteine toxicity leading to COX deficiency and apoptosis in primary neurons, PC12 and SHSY-5Y cells. Neurobiol Dis. 2006;23:725–730. doi: 10.1016/j.nbd.2006.06.010. [DOI] [PubMed] [Google Scholar]
- [7].Sayre L.M., Perry G., Smith M.A. Redox metals and neurodegenerative disease. Curr Opin Chem Biol. 1999;3:220–225. doi: 10.1016/S1367-5931(99)80035-0. [DOI] [PubMed] [Google Scholar]
- [8].Strausak D., Mercer J.F., Dieter H.H., Stremmel W., Multhaup G. Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull. 2001;55:175–185. doi: 10.1016/S0361-9230(01)00454-3. [DOI] [PubMed] [Google Scholar]
- [9].Jing G., Li Y., Xie L., Zhang R. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp Biochem Physiol C Toxicol Pharmacol. 2006;144:184–190. doi: 10.1016/j.cbpc.2006.08.005. [DOI] [PubMed] [Google Scholar]
- [10].Nicholson S., Lam P.K. Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia) Environ Int. 2005;31:121–132. doi: 10.1016/j.envint.2004.05.007. [DOI] [PubMed] [Google Scholar]
- [11].Hasegawa T., Kaneko F., Niwa Y. Changes in lipid peroxide levels and activity of reactive oxygen scavenging enzymes in skin, serum and liver following UVB irradiation in mice. Life Sci. 1992;50:1893–1903. doi: 10.1016/0024-3205(92)90550-9. [DOI] [PubMed] [Google Scholar]
- [12].Ostrakhovitch E.A., Cherian M.G. Differential regulation of signal transduction pathways in wild type and mutated p53 breast cancer epithelial cells by copper and zinc. Arch Biochem Biophys. 2004;423:351–361. doi: 10.1016/j.abb.2004.01.004. [DOI] [PubMed] [Google Scholar]
- [13].Nishikawa T., Lee I.S., Shiraishi N., Ishikawa T., Ohta Y., Nishikimi M. Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. J Biol Chem. 1997;272:23037–23041. doi: 10.1074/jbc.272.37.23037. [DOI] [PubMed] [Google Scholar]
- [14].Castillo M.R., Babson J.R. Ca2+-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86:1133–1144. doi: 10.1016/S0306-4522(98)00070-0. [DOI] [PubMed] [Google Scholar]
- [15].Kruman I.I., Mattson M.P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem. 1999;72:529–540. doi: 10.1046/j.1471-4159.1999.0720529.x. [DOI] [PubMed] [Google Scholar]
- [16].McGinnis K.M., Wang K.K., Gnegy M.E. Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells. J Neurochem. 1999;72:1853–1863. doi: 10.1046/j.1471-4159.1999.0721853.x. [DOI] [PubMed] [Google Scholar]
- [17].Stridh H., Kimland M., Jonnes D.P., Orrenius S., Hampton M.B. Cytochrome c release and caspase activation in hydrogen peroxide-and tributyltin-induced apoptosis. FEBS Lett. 1998;429:351–355. doi: 10.1016/S0014-5793(98)00630-9. [DOI] [PubMed] [Google Scholar]
- [18].Erhardt P., Cooper G.M. Activation of the CPP32 apoptotic protease by distinct signaling pathways with differential sensitivity to Bcl-xL. J Biol Chem. 1996;271:17601–17604. doi: 10.1074/jbc.271.30.17601. [DOI] [PubMed] [Google Scholar]
- [19].Koestenbauer S., Vanderzwalmen P., Hammer A., Schoonjans L., Danloy S., Zech H., et al. Apoptosis affects integration frequency: Adult stem cells injected in blastocysts show high caspase-3 activity. Cell Biol Int. 2007;31:489–493. doi: 10.1016/j.cellbi.2006.11.023. [DOI] [PubMed] [Google Scholar]