Abstract
Objective
To explore effects of cerebral ischemia on the ceruloplasmin (Cp) expression in the cortex and hippocampus of rats.
Methods
Male Wistar rats were randomly divided into cerebral ischemia group and control group. Cerebral ischemia was induced by ligating bilateral common carotid arteries and the ischemic rats were further subgrouped according to ischemia time. The control rats received a sham operation. The expression of Cp mRNA in the cortex and hippocampus was measured by reverse transcription polymerase chain reaction (RT-PCR). The Cp expression was shown by immunohistochemistrical (streptavidin peroxidase, SP) method.
Results
In ischemia group, the expression of Cp mRNA in the cortex and hippocampus decreased compared with that in control group (P < 0.01); and the longer rats experienced cerebral ischemia, the lower Cp mRNA expressed. By immunohistochemistry, Cp was shown expressed in the neural cells including epithelial cells of choroid plexus, ependymal cells, astrocytes of cortex and hippocampus, and vascular endothelial cells, but not in pyramidal cells and granulosa cells of cortex and hippocampus. Cp levels in the cortex and hippocampus decreased in rats suffering from cerebral ischemia for 3 d, 7 d and 28 d but not in rats exposed to ischemia for 1 d compared with that in control group (P < 0.05). Iron concentration correlated negatively with Cp expression in the cortex and hippocampus of rats exposure to ischemia (the cortex, r = −0.831, P < 0.01; the hippocampus, r = −0.809, P < 0.01).
Conclusion
Cerebral ischemia inhibited Cp expression in the cortex and hippocampus of rats. The decrease of Cp might be involved in iron deposition in neurons.
Keywords: cerebral ischemia, brain iron concentration, ceruloplasmin
摘要
目的
探讨脑缺血对大鼠皮层及海马中铜蓝蛋白 (Ceruloplasmin, Cp) 表达的影响。
方法
雄性 Wistar 大鼠 60 只, 随机分为脑缺血 1、 3、 7、 28 d 组和假手术对照组, 每组各 12 只。 实验组结扎双侧颈总动脉造成大鼠脑缺血, 假手术对照组仅分离出双侧颈总动脉但不结扎。 采用反转录聚合酶链反应 (RT-PCR) 检测皮层及海马组织中 Cp mRNA 的表达, 免疫组织化学观察皮层及海马组织中 Cp 的表达。
结果
大鼠皮层和海马均表达 Cp mRNA。 皮层和海马 Cp mRNA 的表达随缺血时间的延长逐渐降低, 缺血 1、 3、 7、 28 d 组表达均低于假手术组 (P < 0.01)。 脑组织脉络丛细胞、 室맜膜细胞、 皮层和海马的星形胶质细胞、 血맜内皮细胞均表达 Cp; 而皮层和海马的锥体细胞和颗粒细胞均不表达 Cp。 缺血 1 d 组皮层及海马 Cp 表达与对照组差异不显著 (P > 0.05); 缺血 3 d 组皮层和海马 Cp 表达低于假手术组 (P < 0.05); 缺血第 7、 28 d 组 Cp 表达减少极为显著 (P < 0.01)。 脑缺血大鼠皮层和海马中铁含量与 Cp 的表达呈负相关, 相关系数分别为 −0.831 (P < 0.01) 和 −0.809 (P < 0.01)。
结论
脑缺血可诱导大鼠皮层及海马中 Cp 表达降低。 脑缺血后 Cp 表达减少可能参与了脑缺血引起的铁含量升高及神经元铁沉积的过程。
关键词: 脑缺血, 脑铁含量, 铜蓝蛋白
References
- [1].Jeong S.Y., David S. Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. J Neurosci. 2006;26:9810–9819. doi: 10.1523/JNEUROSCI.2922-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Patel B.N., David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J Biol Chem. 1997;272:20185–20190. doi: 10.1074/jbc.272.32.20185. [DOI] [PubMed] [Google Scholar]
- [3].Patel B.N., Dunn R.J., David S. Alternative RNA splicing generates a glycosylphosphatidylinositol-anchored form of ceruloplasmin in mammalian brain. J Biol Chem. 2000;275:4305–4310. doi: 10.1074/jbc.275.6.4305. [DOI] [PubMed] [Google Scholar]
- [4].Morita H., Inoue A., Yanagisawa N. A case of ceruloplasmin deficiency which showed dementia, ataxia and iron deposition in the brain. Rinsho Shinkeigaku. 1992;32:483–487. [PubMed] [Google Scholar]
- [5].Patel B.N., Dunn R.J., Jeong S.Y., Zhu Q., Julien J.P., David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci. 2002;22:6578–6586. doi: 10.1523/JNEUROSCI.22-15-06578.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [6].Qian Z.M., Ke Y. Rethinking the role of ceruloplasmin in brain iron metabolism. Brain Res Brain Res Rev. 2001;35:287–294. doi: 10.1016/S0165-0173(01)00056-X. [DOI] [PubMed] [Google Scholar]
- [7].Qian Z.M., Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Rev. 1998;27:257–267. doi: 10.1016/S0165-0173(98)00012-5. [DOI] [PubMed] [Google Scholar]
- [8].Li Y.W., Zhao J.Y., Li L. Changes of iron concentration and expression of ferroportin1 in the cortex and hippocampus of rats induced by cerebral ischemia. J Shanxi Med Uni. 2007;38:487–490. [Google Scholar]
- [9].Qian Z.M., Shen X. Brain iron transport and neurodegeneration. Trend Mol Med. 2001;7:103–108. doi: 10.1016/S1471-4914(00)01910-9. [DOI] [PubMed] [Google Scholar]
- [10].Wakita H., Tomimoto H., Akiguchi I., Kimura J. Glia activation and white matter change in the rat brain induced by chronic cerebral hypoperfusion: an immunohischemical study. Acta Neuro-pathol (Berl) 1994;87:484–492. doi: 10.1007/BF00294175. [DOI] [PubMed] [Google Scholar]
- [11].Chen L., Dentchev T., Wong R., Hahn P., Wen R., Bennett J., et al. Increased expression of ceruloplasmin in the retina following photic Injury. Molecular Vision. 2003;9:151–158. [PubMed] [Google Scholar]
- [12].Shen H. Quantitative method studies of immunohistochemistry staining. Chin J Histochem Cytochem. 1995;4:89–92. [Google Scholar]
- [13].Kondo Y., Ogawa N., Asanuma M., Ota Z., Mori A. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J Cereb Blood Flow Metab. 1995;15:216–226. doi: 10.1038/jcbfm.1995.27. [DOI] [PubMed] [Google Scholar]
- [14].Ishimaru H., Ishikawa K., Ohe Y., Takahashi A., Tatemoto K., Maruyama Y. Activation of iron handling system within the gerbil hippocampus after cerebral ischemia. Brain Res. 1996;726:23–30. doi: 10.1016/0006-8993(96)00294-6. [DOI] [PubMed] [Google Scholar]
- [15].Chi S.I., Wang C.K., Chen J.J., Chau L.Y., Lin T.N. Differential regulation of H-and L-ferritin messenger RNA subunits, ferritin protein and iron following focal cerebral ischemia-reperfusion. Neuroscience. 2000;100:475–484. doi: 10.1016/S0306-4522(00)00317-1. [DOI] [PubMed] [Google Scholar]
- [16].Klomp L.W., Farhangrazi Z.S., Dugan L.L., Gitlin J.D. Ceruloplasmin gene expression in the murine central nervous system. J Clin Invest. 1996;98:207–215. doi: 10.1172/JCI118768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Klomp L.W., Gitlin J.D. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum Mol Genet. 1996;5:1989–1996. doi: 10.1093/hmg/5.12.1989. [DOI] [PubMed] [Google Scholar]
- [18].Hellman N.E., Gitlin J.D. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–458. doi: 10.1146/annurev.nutr.22.012502.114457. [DOI] [PubMed] [Google Scholar]
- [19].Osaki S., Johnson D.A., Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem. 1966;241:2746–2751. [PubMed] [Google Scholar]
- [20].Jeong S.Y., David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem. 2003;278:27144–27148. doi: 10.1074/jbc.M301988200. [DOI] [PubMed] [Google Scholar]
- [21].Qian Z.M., Tsoi Y.K., Ke Y., Wong M.S. Ceruloplasmin promotes iron uptake rather than release in BT325 cells. Exp Brain Res. 2001;140:369–374. doi: 10.1007/s002210100831. [DOI] [PubMed] [Google Scholar]
- [22].Xie J.X., Tsoi Y.K., Chang Y.Z., Ke Y., Qian Z.M. Effects of ferroxidase activity and species on ceruloplasmin mediated iron uptake by BT325 cells. Brain Res Mol Brain Res. 2002;99:12–16. doi: 10.1016/S0169-328X(01)00336-9. [DOI] [PubMed] [Google Scholar]
- [23].Ke Y., Ho K., Du J. e. a1. Role of soluble ceruloplasmin in iron uptake by midbrain and hippocampus neurons. J Cell Biochem. 2006;98:912–919. doi: 10.1002/jcb.20740. [DOI] [PubMed] [Google Scholar]
- [24].Reilly C.A., Aust S.D. Stimulation of the ferroxidase activity of ceruloplasmin during iron loading into ferritin. Arch Biochem Biophys. 1997;347:242–248. doi: 10.1006/abbi.1997.0351. [DOI] [PubMed] [Google Scholar]
- [25].Van Eden M.E., Aust S.D. Intact human ceruloplasmin is required for the incorporation of iron into human ferritin. Arch Biochem Biophys. 2000;381:119–126. doi: 10.1006/abbi.2000.1952. [DOI] [PubMed] [Google Scholar]