Abstract
Objective
To investigate the expressions of Galectin-3 (Gal-3), Bcl-2 and Bax in human pituitary adenomas, and to explore the interrelation among them.
Methods
RT-PCR and immunohistochemistry were applied to detect the mRNA and protein expressions of Gal-3, Bcl-2 and Bax in surgically excised human pituitary adenoma tissues, including invasive and non-invasive pituitary adenomas, and the correlation analysis was performed.
Results
The Gal-3 and Bcl-2 expressions in the invasive pituitary group were significantly higher than those in the non-invasive group, and the expression of Bax had no significant difference between the two groups. Pearson’s correlation analyses showed that the Gal-3 expression was positively correlated with Bcl-2, but was not correlated with Bax, which was inversely correlated with expression of Bcl-2.
Conclusion
Gal-3 may function through a cell death inhibition pathway involving Bcl-2 to enhance cell proliferation, which result in the invasive growth of pituitary adenoma. These results indicate that Gal-3 has an important role in pituitary tumor cell proliferation and may serves as a possible therapeutic target in treatment of pituitary tumors.
Keywords: pituitary neoplasma, galectin-3, apoptosis, invasiveness
摘要
目的
探讨垂体腺瘤中半乳糖凝集素-3(Galectin-3, Gal-3)和凋亡相关基因 Bcl-2、 Bax 的内在联系。
方法
RT-PCR检测20例垂体腺瘤Gal-3、 Bcl-2和Bax mRNA的表达; 免疫组化染色检测78例垂体腺瘤中Gal-3、 Bcl-2和 Bax 蛋白表达, 分析侵袭性和非侵袭性垂体腺瘤中Gal-3、 Bcl-2 和Bax 表达的差异及其相关关系。
结果
侵袭组垂体腺瘤Gal-3和Bcl-2 mRNA和蛋白的表达水平较非侵袭组显著增高, 而Bax mRNA 和蛋白在两组中的表达水平无显著差异。 等级相关分析显示Gal-3 蛋白与Bcl-2 蛋白之间有正直线相关关系(r = 0.291, P = 0.01); Gal-3 蛋白与Bax蛋白之间无直线相关关系(r = −0.023, P > 0.05); Bcl-2 蛋白与Bax蛋白表达之间的Pearson相关系数为r = −0.267, P < 0.05(双侧), 呈负相关关系。
结论
Gal-3 可能主要是通过与Bcl-2 协同作用, 发挥其抗凋亡效应, 相对促进, 体腺瘤细胞增殖, 导致垂体腺瘤的侵袭性生长。这些结果提示Gal-3 在垂体肿瘤细胞增殖过程中发挥重要作用, 有望作为垂体腺瘤的一个治疗靶点。
关键词: 垂体腺瘤, 半乳糖凝集素-3, 凋亡, 侵袭性
References
- [1].Liu F.T., Patterson R.J., Wang J.L. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572:263–273. doi: 10.1016/s0304-4165(02)00313-6. [DOI] [PubMed] [Google Scholar]
- [2].Nangia-Makker P., Honjo Y., Sarvis R., Akahani S., Hogan V., Pienta K.J., et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156:899–909. doi: 10.1016/S0002-9440(10)64959-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Yoshii T., Fukumori T., Honjo Y., Inohara H., Kim H.R., Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277:6852–6857. doi: 10.1074/jbc.M107668200. [DOI] [PubMed] [Google Scholar]
- [4].Kawatani M., Imoto M. Deletion of the BH1 domain of Bcl-2 accelerates apoptosis by acting in a dominant negative fashion. J Biol Chem. 2003;278:19732–19742. doi: 10.1074/jbc.M213038200. [DOI] [PubMed] [Google Scholar]
- [5].Jaffrain-Rea M.L., Di Stefano D., Minniti G., Esposito V., Bultrini A., Ferretti E., et al. A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr Relat Cancer. 2002;9:103–113. doi: 10.1677/erc.0.0090103. [DOI] [PubMed] [Google Scholar]
- [6].Gong J.Y., Shi J.X., Liu C.J., Hang C.H., Cheng H.L., Yin H.X. The role of cell proliferating nuclear antigen on predicting the recurrence of postoperative pituitary adenomas. Chin J Neurosurg. 2001;17:11–13. [Google Scholar]
- [7].Hardy J., Vezina J.L. Transsphenoidal neurosurgery of intracranial neoplasm. Adv Neurol. 1976;15:261–273. [PubMed] [Google Scholar]
- [8].Knosp E., Steiner E., Kitz K., Matula C. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993;33:610–618. doi: 10.1097/00006123-199310000-00008. [DOI] [PubMed] [Google Scholar]
- [9].Ochieng J., Fridman R., Nangia-Makker P., Kleiner D.E., Liotta L.A., Stetler-Stevenson W.G., et al. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and-9. Biochemistry. 1994;33:14109–14114. doi: 10.1021/bi00251a020. [DOI] [PubMed] [Google Scholar]
- [10].Yu F., Finley R.L., Jr, Raz A., Kim H.R. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome C release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem. 2002;277:15819–15827. doi: 10.1074/jbc.M200154200. [DOI] [PubMed] [Google Scholar]
- [11].Raz A., Zhu D.G., Hogan V., Shah N., Raz T., Karkash R., et al. Evidence for the role of 34-kDa galactoside-binding lectin in transformation and metastasis. Int J Cancer. 1990;46:871–877. doi: 10.1002/ijc.2910460520. [DOI] [PubMed] [Google Scholar]
- [12].Schoeppner H.L., Raz A., Ho S.B., Bresalier R.S. Expression of an endogenous galactoside-binding lectin correlates with neoplastic progression in the colon. Cancer. 1995;75:2818–2826. doi: 10.1002/1097-0142(19950615)75:12<2818::AID-CNCR2820751206>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- [13].Bresalier R.S., Mazurek N., Sternberg L.R., Byrd J.C., Yunker C.K., Nangia-Makker P., et al. Metastasis of human colon cancer is altered by modifying expression of the β-galactoside-binding protein galectin-3. Gastroenterology. 1998;115:287–296. doi: 10.1016/S0016-5085(98)70195-7. [DOI] [PubMed] [Google Scholar]
- [14].Lotan R., Ito H., Yasui W., Yokozaki H., Lotan D., Tahara E. Expression of a 31 kDa lactose-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. Int J Cancer. 1994;56:474–480. doi: 10.1002/ijc.2910560404. [DOI] [PubMed] [Google Scholar]
- [15].van den Brûle F.A., Engel J., Stetler-Stevenson W.G., Liu F.T., Sobel M.E., Castronovo V. Genes involved in tumor invasion and metastasis are differentiall y modulated by estradiol and progestin in human breast cancer cells. Int J Cancer. 1992;52:653–657. doi: 10.1002/ijc.2910520426. [DOI] [PubMed] [Google Scholar]
- [16].Nangia-Makker P., Sarvis R., Visscher D.W., Bailey-Penrod J., Raz A., Sarkar F.H. Galectin-3 and L1 retrotransposons in human breast carcinomas. Breast Cancer Res Treat. 1998;49:171–183. doi: 10.1023/A:1005913810250. [DOI] [PubMed] [Google Scholar]
- [17].Riss D., Jin L., Qian X., Bayliss J., Scheithauer B.W., Young W.F., Jr, et al. Differential expression of galectin-3 in pituitary tumors. Cancer Res. 2003;63:2251–2255. [PubMed] [Google Scholar]
- [18].Wang H., Wang M.D., Ma W.B., Yang D., Shi Y.F., Kong Y.G., et al. Expression of galectin-3 in invasive prolactinomas. Acta Academia Medicinae Sinica. 2005;27:380–381. [PubMed] [Google Scholar]
- [19].Jin L., Riss D., Ruebel K., Kajita S., Scheithauer B.W., Horvath E., et al. Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol. 2005;16:107–114. doi: 10.1385/EP:16:2:107. [DOI] [PubMed] [Google Scholar]
- [20].Thodou E., Argyrakos T., Kontogeorgos G. Galectin-3 as a marker distinguishing functioning from silent corticotroph adenomas. Hormones (Athens) 2007;6:227–232. [PubMed] [Google Scholar]
- [21].Akahani S., Nangia-Makker P., Inohara H., Kim H.R., Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res. 1997;57:5272–5276. [PubMed] [Google Scholar]
- [22].Yoshii T., Fukumori T., Honjo Y., Inohara H., Kim H.R., Raz A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem. 2002;277:6852–6857. doi: 10.1074/jbc.M107668200. [DOI] [PubMed] [Google Scholar]