Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 27;24(1):49–55. doi: 10.1007/s12264-008-0808-9

Molecular control of memory in nematode Caenorhabditis elegans

秀丽线虫记忆的分子调控机制

Hua-Yue Ye 1,2,3, Bo-Ping Ye 1, Da-Yong Wang 2,3,
PMCID: PMC5552524  PMID: 18273077

Abstract

Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, whereas the long-term memory may occur in the postsynaptic interneurons. This review will discuss the recent progress on genetic and molecular regulation of memory in C. elegans.

Keywords: memory, molecular mechanism, Caenorhabditis elegans, model invertebrate organism

References

  • [1].Burrell B.D., Sahley C.L. Learning in simple systems. Curr Opin Neurobiol. 2001;11:757–764. doi: 10.1016/S0959-4388(01)00281-1. [DOI] [PubMed] [Google Scholar]
  • [2].Sforza D.M., Smith D.J. Genetic and genomic strategies in learning and memory. Curr Genomics. 2003;4:475–485. doi: 10.2174/1389202033490259. [DOI] [Google Scholar]
  • [3].McGuire S.E., Deshazer M., Davis R.L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol. 2005;76:328–347. doi: 10.1016/j.pneurobio.2005.09.003. [DOI] [PubMed] [Google Scholar]
  • [4].Gomez M., de Castro E., Guarin E., Sasakura H., Kuhara A., Mori I., et al. Ca2+ Signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron. 2001;30:241–248. doi: 10.1016/S0896-6273(01)00276-8. [DOI] [PubMed] [Google Scholar]
  • [5].de Bono M., Maricq A.V. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. 2005;28:451–501. doi: 10.1146/annurev.neuro.27.070203.144259. [DOI] [PubMed] [Google Scholar]
  • [6].Mohri A., Kodama E., Kimura K.D., Koike M., Mizuno T., Mori I. Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics. 2005;169:1437–1450. doi: 10.1534/genetics.104.036111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Inada H., Ito H., Satterlee J., Sengupta P., Matsumoto K., Mori I. Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics. 2006;172:2239–2252. doi: 10.1534/genetics.105.050013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Biron D., Shibuya M., Gabel C., Wasserman S.M., Clark D.A., Brown A., et al. A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nat Neurosci. 2006;9:1499–1505. doi: 10.1038/nn1796. [DOI] [PubMed] [Google Scholar]
  • [9].Satterlee J.S., Ryu W.S., Sengupta P. The CMK-1 CaMKI and the TAX-4 cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Curr Biol. 2004;14:62–68. doi: 10.1016/j.cub.2003.12.030. [DOI] [PubMed] [Google Scholar]
  • [10].Clark D.A., Gabel C.V., Gabel H., Samuel A.D. Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. J Neurosci. 2007;27:6083–6090. doi: 10.1523/JNEUROSCI.1032-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Kimura K.D., Miyawaki A., Matsumoto K., Mori I. The C. elegans thermosensory neuron AFD responds to warming. Curr Biol. 2004;14:1291–1295. doi: 10.1016/j.cub.2004.06.060. [DOI] [PubMed] [Google Scholar]
  • [12].Samuel A.D., Silva R.A., Murthy V.N. Synaptic activity of the AFD neuron in Caenorhabditis elegans correlates with thermotactic memory. J Neurosci. 2003;23:373–376. doi: 10.1523/JNEUROSCI.23-02-00373.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Colbert H.A., Bargmann C.I. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learn Mem. 1997;4:179–191. doi: 10.1101/lm.4.2.179. [DOI] [PubMed] [Google Scholar]
  • [14].Colbert H.A., Bargmann C.I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron. 1995;14:803–812. doi: 10.1016/0896-6273(95)90224-4. [DOI] [PubMed] [Google Scholar]
  • [15].Remy J., Hobert O. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science. 2005;309:787–790. doi: 10.1126/science.1114209. [DOI] [PubMed] [Google Scholar]
  • [16].Rankin C.H., Wicks S.R. Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. J Neurosci. 2000;20:4337–4344. doi: 10.1523/JNEUROSCI.20-11-04337.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Steidl S, Dube N, Rose JK, Rankin CH. Mutations of a glutamate-gated chloride channel in C. elegans affect short-term memory in an ISI dependent manner, long-term memory, and for aging behavior. Society for Neuroscience Abstracts 28, CD-ROM Program No. 377.3.
  • [18].Rose J.K., Kaun K.R., Rankin C.H. A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. Learn Mem. 2002;9:130–137. doi: 10.1101/lm.46802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Rose J.K., Rankin C.H. Analyses of habituation in Caenorhabditis elegans. Learn Mem. 2001;8:63–69. doi: 10.1101/lm.37801. [DOI] [PubMed] [Google Scholar]
  • [20].Steidl S., Rose J.K., Rankin C.H. Stages of memory in the nematode Caenorhabditis elegans. Behav Cogn Neurosci Rev. 2003;2:3–14. doi: 10.1177/1534582303002001001. [DOI] [PubMed] [Google Scholar]
  • [21].Beck C.D., Rankin C.H. Heat shock disrupts long-term memory consolidation in Caenorhabditis elegans. Learn Mem. 1995;2:161–177. doi: 10.1101/lm.2.3-4.161. [DOI] [PubMed] [Google Scholar]
  • [22].Morrison G.E., van der Kooy D. Cold shock before associative conditioning blocks memory retrieval, but cold shock after conditioning blocks memory retention in Caenorhabditis elegans. Behav Neurosci. 1997;111:564–578. doi: 10.1037/0735-7044.111.3.564. [DOI] [PubMed] [Google Scholar]
  • [23].Rose J.K., Kaun K.R., Chen S.H., Rankin C.H. GLR-1, a non-NMDA glutamate receptor homolog, is critical for long-term memory in Caenorhabditis elegans. J Neurosci. 2003;23:9595–9599. doi: 10.1523/JNEUROSCI.23-29-09595.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Rose J.K., Rankin C.H. Blocking memory reconsolidation reverse memory-associated changes in glutamate receptor expression. J Neurosci. 2006;26:11582–11587. doi: 10.1523/JNEUROSCI.2049-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Ebrahimi C.M., Rankin Ch. Early patterned stimulation leads to changes in adult behavior and gene expression in C. elegans. Genes Brain Behav. 2007;6:517–528. doi: 10.1111/j.1601-183X.2006.00278.x. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES