Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Oct 3;24(5):338–344. doi: 10.1007/s12264-008-1221-0

Fragile X syndrome and epilepsy

脆性X综合征与癫痫

Li-Feng Qiu 1,2,, Yan-Hong Hao 1, Qing-Zhang Li 1, Zhi-Qi Xiong 2
PMCID: PMC5552528  PMID: 18839028

Abstract

Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.

Keywords: epilepsy, fragile X mental retardation protein, metabotropic glutamate receptor, γ-aminobutyric acid, dendritic spines

References

  • [1].Hagerman R.J. Physical and behavioral phenotype. In: Hagerman R.J., Hagerman P.J., editors. Fragile X syndrome: diagnosis, treatment and research. 3rd ed. Baltimore: Johns Hopkins University Press; 2002. pp. 3–109. [Google Scholar]
  • [2].Bennetto L., Pennington B.F. The neuropsychology of fragile X syndrome. In: Hagerman R.J., Cronister, editors. Fragile X syndrome: diagnosis, treatment and research. 2nd ed. Baltimore: Johns Hopkins University Press; 1996. pp. 210–248. [Google Scholar]
  • [3].Turner G., Daniel A., Frost M. X-linked mental retardation, macroorchidism, and the Xq27 fragile site. J Pediatr. 1980;96:837–841. doi: 10.1016/S0022-3476(80)80552-X. [DOI] [PubMed] [Google Scholar]
  • [4].Opitz J.M., Westphal J.M., Daniel A. Discovery of a connective tissue dysplasia in the Martin-Bell syndrome. Am J Med Genet. 1984;17:101–109. doi: 10.1002/ajmg.1320170105. [DOI] [PubMed] [Google Scholar]
  • [5].Merenstein S.A., Sobesky W.E., Taylor A.K., Riddle J.E., Tran H.X., Hagerman R.J. Molecular-clinical correlations in males with an expanded FMR1 mutation. Am J Med Genet. 1996;64:388–394. doi: 10.1002/(SICI)1096-8628(19960809)64:2<388::AID-AJMG31>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  • [6].Musumeci S.A., Hagerman R.J., Ferri R., Bosco P., Dalla Bernardina B., Tassinari C.A., et al. Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia. 1999;40:1092–1099. doi: 10.1111/j.1528-1157.1999.tb00824.x. [DOI] [PubMed] [Google Scholar]
  • [7].Sabaratnam M., Vroegop P.G., Gangadharan S.K. Epilepsy and EEG findings in 18 males with fragile X syndrome. Seizure. 2001;10:60–63. doi: 10.1053/seiz.2000.0492. [DOI] [PubMed] [Google Scholar]
  • [8].O’Donnell W.T., Warren S.T. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci. 2002;25:315–338. doi: 10.1146/annurev.neuro.25.112701.142909. [DOI] [PubMed] [Google Scholar]
  • [9].Ashley C.T., Jr, Wilkinson K.D., Reines D., Warren S.T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science. 1993;262:563–566. doi: 10.1126/science.7692601. [DOI] [PubMed] [Google Scholar]
  • [10].Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenenbaum S.A., et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001;107:477–487. doi: 10.1016/S0092-8674(01)00568-2. [DOI] [PubMed] [Google Scholar]
  • [11].Miyashiro K.Y., Beckel-Mitchener A., Purk T.P., Becker K.G., Barret T., Liu L., et al. RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron. 2003;37:417–431. doi: 10.1016/S0896-6273(03)00034-5. [DOI] [PubMed] [Google Scholar]
  • [12].Davidovic L., Jaglin X.H., Lepagnol-Bestel A.M., Tremblay S., Simonneau M., Bardoni B., et al. The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet. 2007;16:3047–3058. doi: 10.1093/hmg/ddm263. [DOI] [PubMed] [Google Scholar]
  • [13].Sutula T.P. Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res. 2004;60:161–171. doi: 10.1016/j.eplepsyres.2004.07.001. [DOI] [PubMed] [Google Scholar]
  • [14].Morimoto K., Fahnestock M., Racine R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:1–60. doi: 10.1016/j.pneurobio.2004.03.009. [DOI] [PubMed] [Google Scholar]
  • [15].Shi X.Y., Wang J.W., Lei G.F., Sun R.P. Morphological and behavioral consequences of recurrent seizures in neonatal rats are associated with glucocorticoid levels. Neurosci Bull. 2007;23:83–91. doi: 10.1007/s12264-007-0012-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Chen L., Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience. 2001;103:1043–1050. doi: 10.1016/S0306-4522(01)00036-7. [DOI] [PubMed] [Google Scholar]
  • [17].Li Z., Zhang Y., Ku L., Wilkinson K.D., Warren S.T., Feng Y. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 2001;29:2276–2283. doi: 10.1093/nar/29.11.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Hummel T., Krukkert K., Roos J., Davis G., Klämbt C. Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron. 2000;26:357–370. doi: 10.1016/S0896-6273(00)81169-1. [DOI] [PubMed] [Google Scholar]
  • [19].Wei Z.X., Yi Y.H., Sun W.W., Wang R., Su T., Bai Y.J., et al. Expression changes of microtubule associated protein 1B in the brain of Fmr1 knockout mice. Neurosci Bull. 2007;23:203–208. doi: 10.1007/s12264-007-0030-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Lee A., Li W., Xu K., Bogert B.A., Su K., Gao F.B. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development. 2003;130:5543–5552. doi: 10.1242/dev.00792. [DOI] [PubMed] [Google Scholar]
  • [21].Schenck A., Bardoni B., Langmann C., Harden N., Mandel J.L., Giangrande A. CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron. 2003;38:887–898. doi: 10.1016/S0896-6273(03)00354-4. [DOI] [PubMed] [Google Scholar]
  • [22].Costa A., Wang Y., Dockendorff T.C., Erdjument-Bromage H., Tempst P., Schedl P., et al. The Drosophila fragile X protein functions as a negative regulator in the orb autoregulatory pathway. Dev Cell. 2005;8:331–342. doi: 10.1016/j.devcel.2005.01.011. [DOI] [PubMed] [Google Scholar]
  • [23].Zarnescu D.C., Jin P., Betschinger J., Nakamoto M., Wang Y., Dockendorff T.C., et al. Fragile X protein functions with lgl and the par complex in flies and mice. Dev Cell. 2005;8:43–52. doi: 10.1016/j.devcel.2004.10.020. [DOI] [PubMed] [Google Scholar]
  • [24].Dateki M., Horii T., Kasuya Y., Mochizuki R., Nagao Y., Ishida J., et al. Neurochondrin negatively regulates CaMKII phosphorylation, and nervous system-specific gene disruption results in epileptic seizure. J Biol Chem. 2005;280:20503–20508. doi: 10.1074/jbc.M414033200. [DOI] [PubMed] [Google Scholar]
  • [25].Hou L., Antion M.D., Hu D., Spencer C.M., Paylor R., Klann E. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron. 2006;51:441–454. doi: 10.1016/j.neuron.2006.07.005. [DOI] [PubMed] [Google Scholar]
  • [26].Nosyreva E.D., Huber K.M. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol. 2006;95:3291–3295. doi: 10.1152/jn.01316.2005. [DOI] [PubMed] [Google Scholar]
  • [27].Ronesi JA, Huber KM. Metabotropic glutamate receptors and fragile X mental retardation protein: partners in translational regulation at the synapse. Sci Signal. 2008;1:pe6. doi: 10.1126/stke.15pe6. [DOI] [PubMed] [Google Scholar]
  • [28].Huber K.M., Gallagher S.M., Warren S.T., Bear M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99:7746–7750. doi: 10.1073/pnas.122205699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Chapman A.G., Nanan K., Williams M., Meldrum B.S. Anticonvulsant activity of two metabotropic glutamate group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893) Neuropharmacology. 2000;39:1567–1574. doi: 10.1016/S0028-3908(99)00242-7. [DOI] [PubMed] [Google Scholar]
  • [30].Musumeci S.A., Bosco P., Calabrese G., Bakker C., De Sarro G.B., Elia M., et al. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia. 2000;41:19–23. doi: 10.1111/j.1528-1157.2000.tb01499.x. [DOI] [PubMed] [Google Scholar]
  • [31].Chen L., Toth M. Fragile X mice develop sensory hyperactivity to auditory stimuli. Neuroscience. 2001;103:1043–1050. doi: 10.1016/S0306-4522(01)00036-7. [DOI] [PubMed] [Google Scholar]
  • [32].Dockendorff T.C., Su H.S., McBride S.M., Yang Z., Choi C.H., Siwicki K.K., et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron. 2002;34:973–984. doi: 10.1016/S0896-6273(02)00724-9. [DOI] [PubMed] [Google Scholar]
  • [33].Chuang S.C., Zhao W., Bauchwitz R., Yan Q., Bianchi R., Wong R.K. Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci. 2005;25:8048–8055. doi: 10.1523/JNEUROSCI.1777-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Weiler I.J., Irwin S.A., Klintsova A.Y., Spencer C.M., Brazelton A.D., Miyashiro K., et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A. 1997;94:5395–5400. doi: 10.1073/pnas.94.10.5395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Giuffrida R., Catania M.V. A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive homer proteins in a mouse model of fragile X Syndrome. J Neurosci. 2005;25:8908–8916. doi: 10.1523/JNEUROSCI.0932-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].El Idrissi A., Ding X.H., Scalia J., Trenkner E., Brown W.T., Dobkin C. Decreased GABAA receptor expression in the seizure-prone fragile X mouse. Neurosci Lett. 2005;377:141–146. doi: 10.1016/j.neulet.2004.11.087. [DOI] [PubMed] [Google Scholar]
  • [37].Liebowitz N.R., Pedley T.A., Cutler R.W. Release of gamma-aminobutyric acid from hippocampal slices of the rat following generalized seizures induced by daily electrical stimulation of entorhinal cortex. Brain Res. 1977;138:369–373. doi: 10.1016/0006-8993(77)90755-7. [DOI] [PubMed] [Google Scholar]
  • [38].Kamphuis W., Huisman E., Dreijer A.M., Ghijsen W.E. Kindling increases the K+-evoked. Ca2+-dependent release of endogenous GABA in area CA1 of rat hippocampus. Brain Res. 1990;511:63–70. doi: 10.1016/0006-8993(90)90225-Z. [DOI] [PubMed] [Google Scholar]
  • [39].Kaura S., Bradford H.F., Young A.M., Croucher M.J., Hughes P.D. Effect of amygdaloid kindling on the content and release of amino acids from the amygdaloid complex: in vivo and in vitro studies. J Neurochem. 1995;65:1240–1249. doi: 10.1046/j.1471-4159.1995.65031240.x. [DOI] [PubMed] [Google Scholar]
  • [40].Cain D.P. Kindling by repeated intraperitoneal or intracerebral injection of picrotoxin transfers to electrical kindling. Exp Neurol. 1987;97:243–254. doi: 10.1016/0014-4886(87)90086-0. [DOI] [PubMed] [Google Scholar]
  • [41].Uemura S., Kimura H. Amygdaloid kindling with bicuculline methiodide in rats. Exp Neurol. 1988;102:346–353. doi: 10.1016/0014-4886(88)90230-0. [DOI] [PubMed] [Google Scholar]
  • [42].Reiss A.L., Lee J., Freund L. Neuroanatomy of fragile X syndrome: the temporal lobe. Neurology. 1994;44:1317–1324. doi: 10.1212/wnl.44.7.1317. [DOI] [PubMed] [Google Scholar]
  • [43].Hinton V.J., Brown W.T., Wisniewski K., Rudelli R.D. Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet. 1991;41:289–294. doi: 10.1002/ajmg.1320410306. [DOI] [PubMed] [Google Scholar]
  • [44].Irwin S.A., Galvez R., Greenough W.T. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex. 2000;10:1038–1044. doi: 10.1093/cercor/10.10.1038. [DOI] [PubMed] [Google Scholar]
  • [45].Pan L., Zhang Y.Q., Woodruff E., Broadie K. The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol. 2004;14:1863–1870. doi: 10.1016/j.cub.2004.09.085. [DOI] [PubMed] [Google Scholar]
  • [46].D’Adamo P., Menegon A., Lo Nigro C., Grasso M., Gulisano M., Tamanini F., et al. Mutations in GDI1 are responsible for Xlinked non-specific mental retardation. Nat Genet. 1998;19:134–139. doi: 10.1038/487. [DOI] [PubMed] [Google Scholar]
  • [47].D’Adamo P., Welzl H., Papadimitriou S., Raffaele di Barletta M., Tiveron C., Tatangelo L., et al. Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet. 2002;11:2567–2580. doi: 10.1093/hmg/11.21.2567. [DOI] [PubMed] [Google Scholar]
  • [48].Ferrante M.I., Ghiani M., Bulfone A., Franco B. IL1RAPL2 maps to Xq22 and is specifically expressed in the central nervous system. Gene. 2001;275:217–221. doi: 10.1016/S0378-1119(01)00659-X. [DOI] [PubMed] [Google Scholar]
  • [49].Chelly J., Mandel J.L. Monogenic causes of X-linked mental retardation. Nat Rev Genet. 2001;2:669–680. doi: 10.1038/35088558. [DOI] [PubMed] [Google Scholar]
  • [50].Chelly J. Breakthroughs in molecular and cellular mechanisms underlying X-linked mental retardation. Hum Mol Genet. 1999;8:1833–1838. doi: 10.1093/hmg/8.10.1833. [DOI] [PubMed] [Google Scholar]
  • [51].Ramakers G.J. Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci. 2002;25:191–199. doi: 10.1016/S0166-2236(00)02118-4. [DOI] [PubMed] [Google Scholar]
  • [52].Billuart P., Bienvenu T., Ronce N., des Portes V., Vinet M.C., Zemni R., et al. Oligophrenin-1 encodes a rhoGAP protein involved in Xlinked mental retardation. Nature. 1998;392:923–926. doi: 10.1038/31940. [DOI] [PubMed] [Google Scholar]
  • [53].Allen K.M., Gleeson J.G., Bagrodia S., Partington M.W., MacMillan J.C., Cerione R.A., et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet. 1998;20:25–30. doi: 10.1038/1675. [DOI] [PubMed] [Google Scholar]
  • [54].Kutsche K., Yntema H., Brandt A., Jantke I., Nothwang H.G., Orth U., et al. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet. 2000;26:247–250. doi: 10.1038/80002. [DOI] [PubMed] [Google Scholar]
  • [55].Lebel R.R., May M., Pouls S., Lubs H.A., Stevenson R.E., Schwartz C.E. Non-syndromic X-linked mental retardation associated with a missense mutation (P312L) in the FGD1 gene. Clin Genet. 2002;61:139–145. doi: 10.1034/j.1399-0004.2002.610209.x. [DOI] [PubMed] [Google Scholar]
  • [56].Pasteris N.G., Cadle A., Logie L.J., Porteous M.E., Schwartz C.E., Stevenson R.E., et al. Isolation and analysis of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative, rho/rac guanine nucleotide exchange factor. Cell. 1994;79:669–678. doi: 10.1016/0092-8674(94)90552-5. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES