Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Oct 3;24(5):305. doi: 10.1007/s12264-008-0324-y

Minocycline attenuates cognitive impairment and restrains oxidative stress in the hippocampus of rats with chronic cerebral hypoperfusion

美满霉素改善血맜性痴呆大鼠认知功能损伤并抑制氧化应激

Zhi-You Cai 1, Yong Yan 1,, Shan-Quan Sun 2, Jun Zhang 3, Liang-Guo HUANG 3, Ning Yan 1, Fang Wu 1, Jie-Ying Li 1
PMCID: PMC5552530  PMID: 18839024

Abstract

Objective

Nitric oxide (NO) was speculated to play an important role in the pathophysiology of cerebral ischemia. Minocycline, a tetracycline derivative, reduced inflammation and protected against cerebral ischemia. To study the neuroprotection mechanism of minocycline for vascular dementia, the influences of minocycline on expressions of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were observed in the brains of Wistar rats.

Methods

The vascular dementia rat model was established by permanent bilateral common carotid arteries occlusion (BCCAO). Wistar rats were divideded into 3 groups randomly: sham-operation group (S group), vascular dementia model group (M group), and minocycline treatment group (MT group). The behaviour was tested with Morris water maze and open-field task. Expressions of iNOS and eNOS were measured by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). The optical density value was measured by imaging analysis. Percentage of positive cells with iNOS and eNOS expression was analyzed with optical microscope.

Results

Minocycline attenuated cognitive impairment. Inducible NOS was significantly down-regulated in MT group, compared with that in M group (P < 0.01), while eNOS was significantly up-regulated, compared with that in M group (P < 0.01). The expressions of iNOS and eNOS in M and MT groups were higher than those in S group (P < 0.01).

Conclusion

Minocycline can down-regulate the expression of iNOS and up-regulate the expression of eNOS in vascular dementia, which restrains apoptosis and oxidative stress to protect neural function.

Keywords: vascular dementia, minocycline, nitric oxide synthase

References

  • [1].Morimoto N., Shimazawa M., Yamashima T., Nagai H., Hara H. Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res. 2005;1044:8–15. doi: 10.1016/j.brainres.2005.02.062. [DOI] [PubMed] [Google Scholar]
  • [2].Lin S., Zhang Y., Dodel R., Farlow M.R., Paul S.M., Du Y. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons. Neurosci Lett. 2001;315:61–64. doi: 10.1016/S0304-3940(01)02324-2. [DOI] [PubMed] [Google Scholar]
  • [3].Yrjänheikki J., Tikka T., Keinänen R., Goldsteins G., Chan P.H., Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96:13496–13500. doi: 10.1073/pnas.96.23.13496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Yu C.Y., Cai Z.Y. Effect of minocycline on expression of MMP-2 and MMP-9 in rats with focal cerebral ischemic-reperfusion. J Guizhou Med China. 2006;30:983–985. [Google Scholar]
  • [5].Stirling D.P., Khodarahmi K., Liu J., McPhail L.T., McBride C.B. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 2004;24:2182–2190. doi: 10.1523/JNEUROSCI.5275-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Hewlett K.A., Corbett D. Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience. 2006;141:27–33. doi: 10.1016/j.neuroscience.2006.03.071. [DOI] [PubMed] [Google Scholar]
  • [7].Vannucchi M.G., Bizzoco E., Corsani L., Gianfriddo M., Pedata F., Faussone-Pellegrini M.S. Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Res. 2007;1132:218–227. doi: 10.1016/j.brainres.2006.11.029. [DOI] [PubMed] [Google Scholar]
  • [8].Pluta R.M., Rak R., Wink D.A., Woodward J.J., Khaldi A., Oldfield E.H., et al. Effects of nitric oxide on reactive oxygen species production and infarction size after brain reperfusion injury. Neurosurgery. 2001;48:884–893. doi: 10.1097/00006123-200104000-00039. [DOI] [PubMed] [Google Scholar]
  • [9].Mishra O.P., Mishra R., Ashraf Q.M., Delivoria-Papadopoulos M. Nitric oxide-mediated mechanism of neuronal nitric oxide synthase and inducible nitric oxide synthase expression during hypoxia in the cerebral cortex of newborn piglets. Neuroscience. 2006;140:857–863. doi: 10.1016/j.neuroscience.2006.02.060. [DOI] [PubMed] [Google Scholar]
  • [10].Han F., Shirasaki Y., Fukunaga K. Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem. 2006;99:97–106. doi: 10.1111/j.1471-4159.2006.04048.x. [DOI] [PubMed] [Google Scholar]
  • [11].Chi O.Z., Hunter C., Liu X., Weiss H.R. Effects of VEGF and nitric oxide synthase inhibition on blood-brain barrier disruption in the ischemic and non-ischemic cerebral cortex. Neurol Res. 2005;27:864–868. doi: 10.1179/016164105X49418. [DOI] [PubMed] [Google Scholar]
  • [12].Weng Y.C., Kriz J. Differential neuroprotective effects of a minocycline-based drug cocktail in transient and permanent focal cerebral ischemia. Exp Neurol. 2007;204:433–442. doi: 10.1016/j.expneurol.2006.12.003. [DOI] [PubMed] [Google Scholar]
  • [13].Rosenberg G.A., Estrada E.Y., Mobashery S. Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood-brain barrier opening in rodents: Differences in response based on strains and solvents. Brain Res. 2007;1133:186–192. doi: 10.1016/j.brainres.2006.11.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Xu L., Fagan S.C., Waller J.L., Edwards D., Borlongan C.V., Zheng J., et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004;4:7. doi: 10.1186/1471-2377-4-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Pattison L.R., Kotter M.R., Fraga D., Bonelli R.M. Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease. J Neurol. 2006;253:1137–1142. doi: 10.1007/s00415-006-0198-8. [DOI] [PubMed] [Google Scholar]
  • [16].Choi Y., Kim H.S., Shin K.Y., Kim E.M., Kim M., Kim H.S., et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007;32:2393–2404. doi: 10.1038/sj.npp.1301377. [DOI] [PubMed] [Google Scholar]
  • [17].Zhu S., Stavrovskaya I.G., Drozda M., Kim B.Y., Ona V., Li M., et al. Minocycline inhibits cytochrome C release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417:74–78. doi: 10.1038/417074a. [DOI] [PubMed] [Google Scholar]
  • [18].Wang X., Zhu S., Drozda M., Zhang W., Stavrovskaya I.G., Cattaneo E., et al. Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100:10483–10487. doi: 10.1073/pnas.1832501100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Wu D.C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22:1763–1771. doi: 10.1523/JNEUROSCI.22-05-01763.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Chu L.S., Fang S.H., Zhou Y., Yu G.L., Wang M.L., Zhang W.P., et al. Minocycline inhibits 5-lipoxygenase activation and brain inflammation after focal cerebral ischemia in rats. Acta Pharmacol Sin. 2007;28:763–772. doi: 10.1111/j.1745-7254.2007.00578.x. [DOI] [PubMed] [Google Scholar]
  • [21].Liu Z., Fan Y., Won S.J., Neumann M., Hu D., Zhou L., et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke. 2007;38:146–152. doi: 10.1161/01.STR.0000251791.64910.cd. [DOI] [PubMed] [Google Scholar]
  • [22].Yenari M.A., Xu L., Tang X.N., Qiao Y., Giffard R.G. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37:1087–1093. doi: 10.1161/01.STR.0000206281.77178.ac. [DOI] [PubMed] [Google Scholar]
  • [23].Lewen A., Matz P., Chan P.H. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–890. doi: 10.1089/neu.2000.17.871. [DOI] [PubMed] [Google Scholar]
  • [24].Keynes R.G., Garthwaite J. Nitric oxide and its role in ischemic brain injury. Curr Mol Med. 2004;4:179–191. doi: 10.2174/1566524043479176. [DOI] [PubMed] [Google Scholar]
  • [25].Yap Y.W., Whiteman M., Cheung N.S. Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal. 2007;19:219–228. doi: 10.1016/j.cellsig.2006.06.013. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES