Abstract
Objective
Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2).
Methods
The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays.
Results
(1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3.
Conclusion
Ataxin-3 is a substrate of protein kinase CK2.
Keywords: Machado-Joseph disease/spinocerebellar ataxia type 3, ataxin-3, casein kinase 2, phosphorylation
摘要
目的
马查多-约瑟夫病/脊髓小脑共济失调3型, 是由MJD1基因产物ataxin-3 的C-末端的多聚谷氨酰胺发生重复扩展突变而引起的一种常染色体显性遗传的神经退行性疾病, 目前它的发病机制还不清楚。 很多研究表明磷酸化修饰作用在很多神经退行性疾病的发病过程中起到重要作用, 然而已知可以磷酸化ataxin-3的激酶仍然很少。 本研究的目的是探讨酪蛋白激酶2(Casein kinase 2, CK2)对于ataxin-3的磷酸化作用。
方法
通过GST pull-down和免疫共沉淀技术鉴定ataxin-3和CK2的相互作用。 通过体外磷酸化技术检测CK2对ataxin-3的磷酸化。
结果
(1) 正常和扩展突变型ataxin-3 在体外与CK2α、 β亚单位均发生相互作用; (2) 在293细胞中正常和扩展突变型ataxin-3只和CKβ亚单位相互作用, 而与α亚单位没有结合; (3) 正常和扩展突变型ataxin-3都可以被CK2磷酸化。
结论
Ataxin-3是蛋白激酶CK2 的底物。
关键词: 马查多-约瑟夫病/脊髓小脑共济失调3型, ataxin-3, 酪蛋白激酶2, 磷酸化
References
- [1].Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8:221–228. doi: 10.1038/ng1194-221. [DOI] [PubMed] [Google Scholar]
- [2].Cummings C.J., Zoghbi H.Y. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet. 2000;1:281–328. doi: 10.1146/annurev.genom.1.1.281. [DOI] [PubMed] [Google Scholar]
- [3].Nishiyama K., Murayama S., Goto J., Watanabe M., Hashida H., Katayama S., et al. Regional and cellular expression of the Machado-Joseph disease gene in brains of normal and affected individuals. Ann Neurol. 1996;40:776–781. doi: 10.1002/ana.410400514. [DOI] [PubMed] [Google Scholar]
- [4].Matsumoto M., Yada M., Hatakeyama S., Ishimoto H., Tanimura T., Tsuji S., et al. Molecular clearance of ataxin-3 is regulated by a mammalian E4. Embo J. 2004;23:659–669. doi: 10.1038/sj.emboj.7600081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Paulson H.L., Perez M.K., Trottier Y., Trojanowski J.Q., Subramony S.H., Das S.S., et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997;19:333–344. doi: 10.1016/S0896-6273(00)80943-5. [DOI] [PubMed] [Google Scholar]
- [6].Yan Y.E., Wang H., Fan M. Molecular chaperones and neurodegenerative diseases. Neurosci Bull. 2006;22:118–123. [PubMed] [Google Scholar]
- [7].Lucas J.J., Hernandez F., Gomez-Ramos P., Moran M.A., Hen R., Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. Embo J. 2001;20:27–39. doi: 10.1093/emboj/20.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Jackson G.R., Wiedau-Pazos M., Sang T.K., Wagle N., Brown C.A., Massachi S., et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron. 2002;34:509–519. doi: 10.1016/S0896-6273(02)00706-7. [DOI] [PubMed] [Google Scholar]
- [9].Humbert S., Bryson E.A., Cordelieres F.P., Connors N.C., Datta S.R., Finkbeiner S., et al. The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell. 2002;2:831–837. doi: 10.1016/S1534-5807(02)00188-0. [DOI] [PubMed] [Google Scholar]
- [10].Warby S.C., Chan E.Y., Metzler M., Gan L., Singaraja R.R., Crocker S.F., et al. Huntingtin phosphorylation on serine 421 is significantly reduced in the striatum and by polyglutamine expansion in vivo. Hum Mol Genet. 2005;14:1569–1577. doi: 10.1093/hmg/ddi165. [DOI] [PubMed] [Google Scholar]
- [11].Luo S., Vacher C., Davies J.E., Rubinsztein D.C. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol. 2005;169:647–656. doi: 10.1083/jcb.200412071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Chen H.K., Fernandez-Funez P., Acevedo S.F., Lam Y.C., Kaytor M.D., Fernandez M.H., et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003;113:457–468. doi: 10.1016/S0092-8674(03)00349-0. [DOI] [PubMed] [Google Scholar]
- [13].Emamian E.S., Kaytor M.D., Duvick L.A., Zu T., Tousey S.K., Zoghbi H.Y., et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003;38:375–387. doi: 10.1016/S0896-6273(03)00258-7. [DOI] [PubMed] [Google Scholar]
- [14].Okochi M., Walter J., Koyama A., Nakajo S., Baba M., Iwatsubo T., et al. Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem. 2000;275:390–397. doi: 10.1074/jbc.275.1.390. [DOI] [PubMed] [Google Scholar]
- [15].Allende C.C., Allende J.E. Promiscuous subunit interactions: a possible mechanism for the regulation of protein kinase CK2. J Cell Biochem Suppl. 1998;30–31:129–136. doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<129::AID-JCB17>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- [16].Pinna L.A. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002;115(Pt20):3873–3878. doi: 10.1242/jcs.00074. [DOI] [PubMed] [Google Scholar]
- [17].Guerra B., Issinger O.G. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999;20:391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- [18].Lou D.Y., Dominguez I., Toselli P., Landesman-Bollag E., O’Brien C., Seldin D.C. The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol. 2008;28:131–139. doi: 10.1128/MCB.01119-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Fujiwara H., Hasegawa M., Dohmae N., Kawashima A., Masliah E., Goldberg M.S., et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–164. doi: 10.1038/ncb841. [DOI] [PubMed] [Google Scholar]
- [20].Liu C., Fei E., Jia N., Wang H., Tao R., Iwata A., et al. Assembly of lysine 63-linked ubiquitin conjugates by phosphorylated alpha-synuclein implies Lewy body biogenesis. J Biol Chem. 2007;282:14558–14566. doi: 10.1074/jbc.M700422200. [DOI] [PubMed] [Google Scholar]
- [21].Fei E., Jia N., Zhang T., Ma X., Wang H., Liu C., et al. Phosphorylation of ataxin-3 by glycogen synthase kinase 3beta at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun. 2007;357:487–492. doi: 10.1016/j.bbrc.2007.03.160. [DOI] [PubMed] [Google Scholar]
- [22].Iwata A., Maruyama M., Kanazawa I., Nukina N. Alpha-synuclein affects the MAPK pathway and accelerates cell death. J Biol Chem. 2001;276:45320–45329. doi: 10.1074/jbc.M103736200. [DOI] [PubMed] [Google Scholar]
- [23].Wang G., Ide K., Nukina N., Goto J., Ichikawa Y., Uchida K., et al. Machado-Joseph disease gene product identified in lymphocytes and brain. Biochem Biophys Res Commun. 1997;233:476–479. doi: 10.1006/bbrc.1997.6484. [DOI] [PubMed] [Google Scholar]
- [24].Allende J.E., Allende C.C. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. Faseb J. 1995;9:313–323. doi: 10.1096/fasebj.9.5.7896000. [DOI] [PubMed] [Google Scholar]
- [25].Faust M., Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 2000;301:329–340. doi: 10.1007/s004410000256. [DOI] [PubMed] [Google Scholar]
- [26].Tait D., Riccio M., Sittler A., Scherzinger E., Santi S., Ognibene A., et al. Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum Mol Genet. 1998;7:991–997. doi: 10.1093/hmg/7.6.991. [DOI] [PubMed] [Google Scholar]
- [27].Albrecht M., Golatta M., Wullner U., Lengauer T. Structural and functional analysis of ataxin-2 and ataxin-3. Eur J Biochem. 2004;271:3155–3170. doi: 10.1111/j.1432-1033.2004.04245.x. [DOI] [PubMed] [Google Scholar]
- [28].Rihs H.P., Jans D.A., Fan H., Peters R. The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localization sequence of the SV40 T-antigen. Embo J. 1991;10:633–639. doi: 10.1002/j.1460-2075.1991.tb07991.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Bichelmeier U., Schmidt T., Hubener J., Boy J., Ruttiger L., Habig K., et al. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence. J Neurosci. 2007;27:7418–7428. doi: 10.1523/JNEUROSCI.4540-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Faccio L., Fusco C., Chen A., Martinotti S., Bonventre J.V., Zervos A.S. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem. 2000;275:2581–2588. doi: 10.1074/jbc.275.4.2581. [DOI] [PubMed] [Google Scholar]
- [31].Gray C.W., Ward R.V., Karran E., Turconi S., Rowles A., Viglienghi D., et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem. 2000;267:5699–5710. doi: 10.1046/j.1432-1327.2000.01589.x. [DOI] [PubMed] [Google Scholar]
- [32].Strauss K.M., Martins L.M., Plun-Favreau H., Marx F.P., Kautzmann S., Berg D., et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet. 2005;14:2099–2111. doi: 10.1093/hmg/ddi215. [DOI] [PubMed] [Google Scholar]
- [33].Yang L., Sun M., Sun X.M., Cheng G.Z., Nicosia S.V., Cheng J.Q. Akt attenuation of the serine protease activity of HtrA2/Omi through phosphorylation of serine 212. J Biol Chem. 2007;282:10981–10987. doi: 10.1074/jbc.M700445200. [DOI] [PubMed] [Google Scholar]
- [34].Plun-Favreau H., Klupsch K., Moisoi N., Gandhi S., Kjaer S., Frith D., et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol. 2007;9:1243–1252. doi: 10.1038/ncb1644. [DOI] [PubMed] [Google Scholar]