Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Oct 3;24(5):314–322. doi: 10.1007/s12264-008-0619-z

Genetic predisposition to inflammation: a new risk factor of Alzheimer’s disease

遗传基因的趋炎症性: 阿尔茨海默病的又一危险因素

Ying Wan 1, Gang Wang 1, Sheng-Di Chen 1,2,
PMCID: PMC5552535  PMID: 18839025

Abstract

Inflammation has been shown to play an important role in the progression of Alzheimer’s disease (AD). Recent epidemical study indicates that the incidence of AD in some populations is substantially influenced by the gene polymorphisms of the inflammation mediators. Meanwhile, an ensured risk factor, the ApoE ɛ4 allele is also reported to directly promote inflammation. Accordingly, it appears that an individual genetic background has partly determined his predisposition for AD by the extent of the inflammation response to the chronic stimulus by β-amyloid peptide (Aβ) deposits and other antigen stressor in the elderly. Hence we present a hypothesis that the inflammation genotypes may contribute to AD susceptibility. This may provide a new orientation both for future identification of individuals at risk and for personalized medication.

Keywords: Alzheimer’s disease, inflammation, predisposition, polymorphism, inflammation mediators, ApoE ɛ4 allele, identification, personalized medication

Footnotes

These authors contributed equally to this work.

References

  • [1].Wang X.P., Ding H.L. Alzheimer’s disease: epidemiology, genetics, and beyond. Neurosci Bull. 2008;24:105–109. doi: 10.1007/s12264-008-0105-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Streit W.J. Micorglia and Alzheimer’s disease pathogenesis. J Neurosci Res. 2004;77:1–8. doi: 10.1002/jnr.20093. [DOI] [PubMed] [Google Scholar]
  • [3].Hoozemans J.J., O’Banion M.K. The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol Disord. 2005;4:307–315. doi: 10.2174/1568007054038201. [DOI] [PubMed] [Google Scholar]
  • [4].Davis S., Laroche S. What can rodent models tell us about cognitive decline in Alzheimer’s disease? Mol Neurobiol. 2003;27:249–276. doi: 10.1385/MN:27:3:249. [DOI] [PubMed] [Google Scholar]
  • [5].Tuppo E.E., Arias H.R. The role of inflammation in Alzheimer’s disease. J Biochem Cell Biol. 2005;37:289–305. doi: 10.1016/j.biocel.2004.07.009. [DOI] [PubMed] [Google Scholar]
  • [6].Finch C.E., Morgan T.E. Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position paper. Curr Alzheimer Res. 2007;4:185–189. doi: 10.2174/156720507780362254. [DOI] [PubMed] [Google Scholar]
  • [7].Lindberg C., Hjorth E., Post C., Winblad B., Schultzberg M. Cytokine production by a human microglia cell line: effects of beta-amyloid and alpha-melanocyte-stimulating hormone. J Neurotox Res. 2005;8:367–376. doi: 10.1007/BF03033980. [DOI] [PubMed] [Google Scholar]
  • [8].Nee L.E., Lippa C.F. Alzheimer’s disease in 22 twin pairs-13-year follow-up: hormonal, infectious and traumatic factors. Dement J Geriatr Cogn Disord. 1999;10:148–151. doi: 10.1159/000017115. [DOI] [PubMed] [Google Scholar]
  • [9].Lu K.T., Wang Y.W., Yang J.T., Yang Y.L., Chen H.I. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma. 2005;22:885–895. doi: 10.1089/neu.2005.22.885. [DOI] [PubMed] [Google Scholar]
  • [10].Tong L., Balazs R., Soiampornkul R., Thangnipon W., Cotman C.W. Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging. 2008;29:1380–1393. doi: 10.1016/j.neurobiolaging.2007.02.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Ma G., Chen S., Wang X., Ba M., Yang H., Lu G. Short-term interleukin-1β increases the release of secreted APP(alpha) via MEK1/2-dependent and JNK-dependent alpha-secretase cleavage in neuroglioma U251 cells. J Neurosci Res. 2005;80:683–692. doi: 10.1002/jnr.20515. [DOI] [PubMed] [Google Scholar]
  • [12].Schlirbs R., Heidel K., Apelt J., Gniezdzinska M., Kirazov L., Szutowicz A. Interaction of interleukin-1β with muscarinic acetylchline receptor-mediated signaling cascade in cholinergically differentiated SH-SY5Y cells. Brain Res. 2006;1122:78–85. doi: 10.1016/j.brainres.2006.09.014. [DOI] [PubMed] [Google Scholar]
  • [13].Hampel H., Haslinger A., Scheloske M., Padberg F., Fischer P., Unger J., et al. Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer’s disease brain. Eur Arch Psychiatry Clin Neurosci. 2005;255:269–278. doi: 10.1007/s00406-004-0558-2. [DOI] [PubMed] [Google Scholar]
  • [14].Quintanilla R.A., Orellana D.I., González-Billault C., Maccini R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res. 2004;295:245–257. doi: 10.1016/j.yexcr.2004.01.002. [DOI] [PubMed] [Google Scholar]
  • [15].Braida D., Sacerdote P., Panerai A.E., Bianchi M., Aloisi A.M., Iosuè S., et al. Cognitive function in young and adult IL-6 deficient mice. Behav Brain Res. 2004;153:423–429. doi: 10.1016/j.bbr.2003.12.018. [DOI] [PubMed] [Google Scholar]
  • [16].Qiu Z., Gruol D.L. Interleukin-6, β-amyloid peptide and NMDA interactions in rat cortical neurons. J Neuroimmunol. 2003;139:51–57. doi: 10.1016/S0165-5728(03)00158-9. [DOI] [PubMed] [Google Scholar]
  • [17].Alvarez A., Cacabelos R., Sanpedro C., Garciìa-Fantini M., Aleixandre M. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging. 2007;28:533–536. doi: 10.1016/j.neurobiolaging.2006.02.012. [DOI] [PubMed] [Google Scholar]
  • [18].Takeuchi H., Jin S., Wang J., Zhang G., Kawanokuchi J., Kuno R., et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 2006;281:21362–21368. doi: 10.1074/jbc.M600504200. [DOI] [PubMed] [Google Scholar]
  • [19].Tweedie D., Sambamurti K., Greig N.H. TNF-α inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res. 2007;4:378–385. doi: 10.2174/156720507781788873. [DOI] [PubMed] [Google Scholar]
  • [20].Burton T., Liang B., Dibrov A., Amara F. Transcriptional activation and increase in expression of Alzheimer’s β-amyloid precursor protein gene is mediated by TGF-β in normal human astrocytes. Biochem Biophys Res Commun. 2002;295:702–712. doi: 10.1016/S0006-291X(02)00724-6. [DOI] [PubMed] [Google Scholar]
  • [21].Aigner L., Winkler J., Bogdahn U. Protection or reconstruction: Neuroprotective effects on transforming growth factor-β1 at the cost of reduced neurogenesis. J Neuroforum. 2007;13:4–12. [Google Scholar]
  • [22].Salins P., He Y., Olson K., Glazner G., Kashour T., Amara F. TGF-β1 is increased in a transgenic mouse model of familial Alzheimer’s disease and causes neuronal apoptosis. Neurosci Lett. 2008;430:81–86. doi: 10.1016/j.neulet.2007.10.025. [DOI] [PubMed] [Google Scholar]
  • [23].Tesseur I., Zou K., Esposito L., Bard F., Berber E., Can J.V., et al. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest. 2006;116:3060–3069. doi: 10.1172/JCI27341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Motta M., Imbesi R., Di Rosa M., Stivala F., Malaguarnera L. Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett. 2007;114:46–51. doi: 10.1016/j.imlet.2007.09.002. [DOI] [PubMed] [Google Scholar]
  • [25].Walter S., Letiembre M., Liu Y., Heine H., Penke B., Hao W., et al. Role of the toll-Like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007;20:974–956. doi: 10.1159/000110455. [DOI] [PubMed] [Google Scholar]
  • [26].Minoretti P., Gazzaruso C., Vito C.D., Emanuele E., Bianchi M., Coen E., et al. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett. 2006;391:147–149. doi: 10.1016/j.neulet.2005.08.047. [DOI] [PubMed] [Google Scholar]
  • [27].Wang W.F., Liao Y.C., Wu S.L., Tsai F.J., Lee C.C., Hua C.S. Association of interleukin-I beta and receptor antagonist gene polymorphisms with late onset Alzheimer’s disease in Taiwan Chinese. Eur J Neruol. 2005;12:609–613. doi: 10.1111/j.1468-1331.2005.01033.x. [DOI] [PubMed] [Google Scholar]
  • [28].Zhou Y.T., Zhang Z.X., Zhang J.W., He X.M., Xu T. Association between interleukin-1 α-889 C/T polymorphism and Alzheimer’s disease in Chinese Han population. J Acta Academiae Medicinae Sinicae. 2006;28:186–190. [PubMed] [Google Scholar]
  • [29].Licastro F., Grimaldi L.M., Bonafè M., Martina C., Olivieri F., Cavallone L., et al. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. Neurobiol Aging. 2003;24:921–926. doi: 10.1016/S0197-4580(03)00013-7. [DOI] [PubMed] [Google Scholar]
  • [30].Lio D., Annoni G., Licastro F., Crivello A., Forte G.I., Colonna-Romano G., et al. Tumor necrosis factor-α-308A/G polymorphism is associated with age at onset of Alzheimer’s disease. Mech Ageing Dev. 2006;127:567–571. doi: 10.1016/j.mad.2006.01.015. [DOI] [PubMed] [Google Scholar]
  • [31].Ramos E.M., Lin M.T., Larson E.B., Maezawa I., Tseng L.H., Edwards K.L., et al. Tumor necrosis factor α and interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease. Arch Neurol. 2006;63:1165–1169. doi: 10.1001/archneur.63.8.1165. [DOI] [PubMed] [Google Scholar]
  • [32].Arosio B., Bergamaschini L., Galimberti L., La Porta C., Zanetti M., Calabresi C., et al. +10 T/C polymorphisms in the gene of transforming growth factor-β1 are associated with neurodegeneration and its clinical evolution. Mech Ageing Dev. 2007;128:553–557. doi: 10.1016/j.mad.2007.07.006. [DOI] [PubMed] [Google Scholar]
  • [33].O’Hara R., Sommer B., Way N., Kraemer H.C., Taylor J., Murphy G. Slower speed-of-processing of cognitive tasks is associated with presence of the apolipoprotein ɛ4 allele. J Psychiatric Res. 2007;42:199–204. doi: 10.1016/j.jpsychires.2006.12.001. [DOI] [PubMed] [Google Scholar]
  • [34].Espeseth T., Westlye L.T., Fjell A.M., Walhovd K.B., Rootwelt H., Reinvang I. Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ɛ4. Neurol Aging. 2008;29:329–340. doi: 10.1016/j.neurobiolaging.2006.10.030. [DOI] [PubMed] [Google Scholar]
  • [35].Laskowitz D., Lee D.M., Schmechel D., Staats H.F. Altered immune responses in apolipoprotein E-deficient mice. J Lipid Res. 2000;41:613–620. [PubMed] [Google Scholar]
  • [36].Jofre-Monseny L., de pascual-Teresa S., Plonka E., Huebbe P., Boesch-Saadatmandi C., Miniane A.M., et al. Differential effects of apolipoprotein E3 and E4 on markers of oxidative status in macrophages. Br J Nutr. 2007;97:864–871. doi: 10.1017/S0007114507669219. [DOI] [PubMed] [Google Scholar]
  • [37].Colton C.A., Needham L.K., Brown C., Cook D., Rasheed K., Burke J.R., et al. APOE genotype-specific differences in human and mouse macrophage nitric oxide production. J Neuroimmunol. 2004;147:62–67. doi: 10.1016/j.jneuroim.2003.10.015. [DOI] [PubMed] [Google Scholar]
  • [38].Vitek MP, Brown CM, Colton CA. APOE genotype-specific differences in the innate immune response. Neurobiol Aging 2007, Epub ahead of print. (doi:10.1016/j.neurobiolaging.2007.11.014) [DOI] [PMC free article] [PubMed]
  • [39].Maezawa I., Nivison M., Montine K.S., Maeda N., Montine T.J. Neurotoxicity from innate immune response is greatest with targeted replacement of E4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J. 2006;20:797–799. doi: 10.1096/fj.05-5423fje. [DOI] [PubMed] [Google Scholar]
  • [40].Ophir G., Amariglio N., Jacob-Hirsch J., Elkon R., Rechavi G., Michaelson D.M. Apolipoprotein E4 enhances brain inflammation by modulation of the NF-kappaB signaling cascade. Neurobiol Dis. 2005;20:709–718. doi: 10.1016/j.nbd.2005.05.002. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES