Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Jul 19;24(3):195. doi: 10.1007/s12264-008-0109-3

The role and the mechanism of γ-aminobutyric acid during central nervous system development

γ-氨基丁酸在中枢神经系统发育中的作用及机制

Ke Li 1, En Xu 1,
PMCID: PMC5552538  PMID: 18500393

Abstract

γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter in adult mammalian central nervous system (CNS). During CNS development, the role of GABA is switched from an excitatory transmitter to an inhibitory transmitter, which is caused by an inhibition of calcium influx into postsynaptic neuron derived from release of GABA. The switch is influenced by the neuronal chloride concentration. When the neuronal chloride concentration is at a high level, GABA acts as an excitatory neurotransmitter. When neuronal chloride concentration decreases to some degree, GABA acts as an inhibitory neurotransmitter. The neuronal chloride concentration is increased by Na+-K+-Cl-Cl cotransporters 1 (NKCC1), and decreased by K+-Cl cotransporter 2 (KCC2).

Keywords: GABA, neurotransmitter receptor, central nervous system, development

References

  • [1].Lin M.H., Takahashi M.P., Takahashi Y., Tsumoto T. Intracellular calcium increase induced by GABA in visual cortex of fetal and neonatal rats and its disappearance with development. Neurosci Res. 1994;20:85–94. doi: 10.1016/0168-0102(94)90025-6. [DOI] [PubMed] [Google Scholar]
  • [2].Ganguly K., Schinder A.F., Wong S.T., Poo M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell. 2001;105:521–532. doi: 10.1016/S0092-8674(01)00341-5. [DOI] [PubMed] [Google Scholar]
  • [3].Martin D.L., Martin S.B., Wu S.J., Espina N. Regulatory properties of brain glutamate decarboxylase (GAD): the apoenzyme of GAD is present principally as the smaller of two molecular forms of GAD in brain. J Neurosci. 1991;11:2725–2731. doi: 10.1523/JNEUROSCI.11-09-02725.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Wu Y.M., Wang R., He R.R. Urotensin II inhibits electrical activity of hippoCampal CA1 neurons by potentiating the GABAA receptor-mediated Cl− current. Neurosci Bull. 2006;22:110–114. [PubMed] [Google Scholar]
  • [5].Herlenius E., Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev. 2001;65:21–37. doi: 10.1016/S0378-3782(01)00189-X. [DOI] [PubMed] [Google Scholar]
  • [6].Stein V., Hermans-Borqmever I., Jentsch T.J., Hübner C.A. Expression of the KCl cortransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J Comp Neurol. 2004;468:57–64. doi: 10.1002/cne.10983. [DOI] [PubMed] [Google Scholar]
  • [7].Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol. 1994;42:489–537. doi: 10.1016/0301-0082(94)90049-3. [DOI] [PubMed] [Google Scholar]
  • [8].Herlenius E., Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol. 2004;190:S8–S21. doi: 10.1016/j.expneurol.2004.03.027. [DOI] [PubMed] [Google Scholar]
  • [9].Ueno T., Okabe A., Akaike N., Fukuda A., Nabekura J. Diversity of neuron-specific K+-Cl− cotransporter expression and inhibitory postsynaptic potential depression in rat motoneurons. J Biol Chem. 2002;277:4945–4950. doi: 10.1074/jbc.M109439200. [DOI] [PubMed] [Google Scholar]
  • [10].Giménez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens. 2006;15:517–523. doi: 10.1097/01.mnh.0000242178.44576.b0. [DOI] [PubMed] [Google Scholar]
  • [11].Chin D.X., Fraser J.A., Usher-Smith J.A., Skepper J.N., Huang C.L. Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle. J Muscle Res Cell Motil. 2004;25:379–387. doi: 10.1007/s10974-004-2767-8. [DOI] [PubMed] [Google Scholar]
  • [12].Russell J.M. Sodium-potassium-chloride cotransport. Physiol Rev. 2000;80:211–276. doi: 10.1152/physrev.2000.80.1.211. [DOI] [PubMed] [Google Scholar]
  • [13].Breitwieser G.E., Altamirano A.A., Russell J.M. Elevated [Cl−]i, and [Na+]i inhibit Na+, K+, Cl− cotransport by different mechanisms in squid giant axons. J Gen Physiol. 1996;107:261–270. doi: 10.1085/jgp.107.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Clayton G.H., Owens G.C., Wolff J.S., Smith R.L. Ontogeny of cation-Cl− cotransporter expression in rat neocortex. Brain Res Dev Brain Res. 1998;109:281–292. doi: 10.1016/S0165-3806(98)00078-9. [DOI] [PubMed] [Google Scholar]
  • [15].Hübner C.A., Lorke D.E. Hermans-Borgmeyer I. Expression of the Na-K-2Cl-cotransporter NKCC1 during mouse development. Mech Dev. 2001;102:267–269. doi: 10.1016/S0925-4773(01)00309-4. [DOI] [PubMed] [Google Scholar]
  • [16].Yamada J., Okabe A., Toyoda H., Kilb W., Luhmann H.J., Fukuda A. Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol. 2004;557:829–841. doi: 10.1113/jphysiol.2004.062471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Sung K.W., Kirby M., McDonald M.P., Lovinger D.M., Delpire E. Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci. 2000;20:7531–7538. doi: 10.1523/JNEUROSCI.20-20-07531.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Dzhala V.I., Talos D.M., Sdrulla D.A., Brumback A.C., Mathews G.C., Benke T.A., et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med. 2005;11:1205–1213. doi: 10.1038/nm1301. [DOI] [PubMed] [Google Scholar]
  • [19].Kahle K.T., Rinehart J., de Los Heros P., Louvi A., Meade P., Vazquez N., et al. WNK3 modulates transport of Cl− in and out of cells: implications for control of cell volume and neuronal excitability. Proc Natl Acad Sci. 2005;102:16783–16788. doi: 10.1073/pnas.0508307102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Li H., Tornberg J., Kaila K., Airaksinen M.S., Rivera C. Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci. 2002;16:2358–2370. doi: 10.1046/j.1460-9568.2002.02419.x. [DOI] [PubMed] [Google Scholar]
  • [21].Hekmat-Scafe D.S., Lundy M.Y., Ranga R., Tanouye M.A. Mutation in the K+-Cl− cotransporter gene kazachoc (kcc) increase seizure susceptibility in Drosophila. J Neurosci. 2006;26:8943–8954. doi: 10.1523/JNEUROSCI.4998-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Mercado A., Broumand V., Zandi-Nejad K., Enck A.H., Mount D.B. A C-terminal domain in KCC2 confers constitutive K+-Cl cotransport. J Biol Chem. 2006;281:1016–1026. doi: 10.1074/jbc.M509972200. [DOI] [PubMed] [Google Scholar]
  • [23].Rivera C., Voipio J., Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl− cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2005;562:27–36. doi: 10.1113/jphysiol.2004.077495. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES