Abstract
Objective
To investigate changes of autophagy after traumatic brain injury (TBI) and its possible role.
Methods
Rat TBI model was established by controlled cortical injury system. Autophagic double membrane structure was detected by transmission electronic microscope. Microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1 were also used to investigate the activation of autophagy post-TBI. Double labeling with LC3 and caspase-3, or Beclin 1 and Fluoro-Jade, to show the relationship between autophagy and apoptosis or neuron degeneration after TBI.
Results
An increase of autophagic double membrane structure was observed in early stage (1 h), and the increase lasted for at least 32 d post-TBI. LC3 and Beclin 1 proteins also began to elevate at 1 h time point post-TBI in neurons, 3 d later in astrocytes, and peaked at about 8 d post-TBI. In both cell types, LC3 and Beclin 1 maintained at a high level until 32 d post-TBI. Most LC3 and Beclin 1 positive cells were near the side (including hippocampus), but not in the core of the injury. In addition, in the periphery of the injury site, not all caspase-3 positive (+) cells merged with LC3 (+) cells post-TBI; In hippocampal area, almost all Beclin 1 (+) neurons did not merge with Fluoro-Jade (+) neurons from 1 h to 48 h post-TBI.
Conclusion
Autophagy is activated and might protect neurons from degeneration at early stage post-TBI and play a continuous role afterwards in eliminating aberrant cell components.
Keywords: autophagy, apoptosis, traumatic brain injury, LC3, Beclin1, neurodegeneration
摘要
目的
研究大鼠脑外伤后自噬是否被激活并探讨其在脑外伤后神经细胞损伤和修复中的作用。
方法
建立大鼠定量脑外伤模型,于脑外伤后不同时间点处死动物并取脑; 应用透射电镜检测脑组织自噬双层膜结构以及次级溶酶体的形成情况; 应用自噬标记抗体LC3B和Beclin-1对脑外伤后不同时间点的脑组织进行免疫荧光和Westernblot 检测; LC3 和caspase-3 或Beclin 1 和Fluoro-Jade 双标记检测。
结果
脑外伤后1 h 在损伤区周围即检测到双层膜结构,并且一直持续到脑外伤后32 天。脑外伤后1 h,脑组织中LC3 和Beclin-1 表达增加,损伤后3 天内阳性细胞以神经元为主,之后阳性胶质细胞增加,第8 天达到高峰,并可持续至脑外伤后32 天仍维持高表达。大多数阳性细胞分布在损伤区周围(包括海马)而不是损伤区。此外,脑外伤后24 小时以前,在损伤区周围不是所有的LC3 阳性细胞都与caspase-3 阳性细胞重叠。同样脑外伤后6 h 至48 h,Beclin 1 阳性海马神经元与Fluoro-Jade染色不重叠。
结论
脑外伤后自噬被激活,在损伤后早期保护损伤区周围神经细胞免于凋亡和退行性变,并对神经细胞损伤与修复发挥长期作用。
关键词: 自噬, 脑外伤, LC3, Beclin 1, 神经退行性变
Footnotes
The two authors contributed equally to this work.
References
- [1].Mizushima N., Ohsumi Y., Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27:421–429. doi: 10.1247/csf.27.421. [DOI] [PubMed] [Google Scholar]
- [2].Cuervo A.M. Autophagy: in sickness and in health. Trends Cell Biol. 2004;14:70–77. doi: 10.1016/j.tcb.2003.12.002. [DOI] [PubMed] [Google Scholar]
- [3].Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–477. doi: 10.1016/S1534-5807(04)00099-1. [DOI] [PubMed] [Google Scholar]
- [4].Kegel K.B., Kim M., Sapp E., McIntyre C., Castano J.G., Aronin N., et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000;20:7268–7278. doi: 10.1523/JNEUROSCI.20-19-07268.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Zakeri Z., Bursch W., Tenniswood M., Lockshin R.A. Cell death: programmed, apoptosis, necrosis, or other? Cell Death Diff. 1995;2:87–96. [PubMed] [Google Scholar]
- [6].Bursch W., Ellinger A., Gerner C., Fröhwein U., Schulte-Hermann R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci. 2000;926:1–12. doi: 10.1111/j.1749-6632.2000.tb05594.x. [DOI] [PubMed] [Google Scholar]
- [7].Rubinsztein D.C., DiFiglia M., Heintz N., Nixon R.A., Qin Z.H., Ravikumar B., et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1:11–22. doi: 10.4161/auto.1.1.1513. [DOI] [PubMed] [Google Scholar]
- [8].Shintani T., Klionsky D.J. Autophgy in health and disease: a doubleedged sword. Science. 2004;306:990–995. doi: 10.1126/science.1099993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Diskin T., Tal-Or P., Erlich S., Mizrachy L., Alexandrovich A., Shohami E., et al. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma. 2005;22:750–762. doi: 10.1089/neu.2005.22.750. [DOI] [PubMed] [Google Scholar]
- [10].Erlich S., Shohami E., Pinkas-Kramarski R. Neurodegeneration induces upregulation of Beclin 1. Autophagy. 2006;2:49–51. doi: 10.4161/auto.2156. [DOI] [PubMed] [Google Scholar]
- [11].Erlich S., Alexandrovich A., Shohami E., Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007;26:86–93. doi: 10.1016/j.nbd.2006.12.003. [DOI] [PubMed] [Google Scholar]
- [12].Clark R.S., Bayir H., Chu C.T., Alber S.M., Kochanek P.M., Watkins S.C. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008;4:88–90. doi: 10.4161/auto.5173. [DOI] [PubMed] [Google Scholar]
- [13].Tao L.Y., Chen X.P., Ding M. The expression of caspase-3 after brain contusion in different severity in rat. J Forensic Med. 2003;19:4–7. [PubMed] [Google Scholar]
- [14].Ashford T.P., Porter K.R. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 1962;12:198–202. doi: 10.1083/jcb.12.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Juhasz G., Neufeld T.P. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 2006;4:e36. doi: 10.1371/journal.pbio.0040036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Zhang Y.B., Chen X.P., Tao L.Y., Qin Z.H., Li S.X., Yang L., et al. Expression of cathepsin-B and-D after traumatic brain injury in rat. J Forensic Med. 2006;22:404–406. [PubMed] [Google Scholar]
- [17].Sugawara K., Suzuki N.N., Fujioka Y., Mizushima N., Ohsumi Y., Inagaki F. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Gen Cell. 2004;9:611–618. doi: 10.1111/j.1356-9597.2004.00750.x. [DOI] [PubMed] [Google Scholar]
- [18].Kouno T., Mizuguchi M., Tanida I., Ueno T., Kanematsu T., Mori Y., et al. Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem. 2005;280:24610–24617. doi: 10.1074/jbc.M413565200. [DOI] [PubMed] [Google Scholar]
- [19].Kabeya Y., Mizushima N., Yamamoto A., Oshitani-Okamoto S., Ohsumi Y., Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004;117(Pt13):2805–2812. doi: 10.1242/jcs.01131. [DOI] [PubMed] [Google Scholar]
- [20].Asanuma K., Tanida I., Shirato I., Ueno T., Takahara H., Nishitani T., et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003;17:1165–1167. doi: 10.1096/fj.02-0580fje. [DOI] [PubMed] [Google Scholar]
- [21].Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol. 2004;36:2491–2502. doi: 10.1016/j.biocel.2004.02.005. [DOI] [PubMed] [Google Scholar]
- [22].Tanida I., Ueno T., Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36:2503–2518. doi: 10.1016/j.biocel.2004.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Wu J.X., Dang Y.J., Su W., Liu C., Ma H.J., Shan Y.X., et al. Molecular cloning and characterization of rat LC3A and LC3B-Two novel markers of autophagosome. Biochem Biophys Res Commun. 2006;339:437–442. doi: 10.1016/j.bbrc.2005.10.211. [DOI] [PubMed] [Google Scholar]
- [24].Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–5728. doi: 10.1093/emboj/19.21.5720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].He H., Dang Y., Dai F., Guo Z., Wu J., She X., et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem. 2003;278:29278–29287. doi: 10.1074/jbc.M303800200. [DOI] [PubMed] [Google Scholar]
- [26].Tanida I., Ueno T., Kominami E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem. 2004;279:47704–47710. doi: 10.1074/jbc.M407016200. [DOI] [PubMed] [Google Scholar]
- [27].Meijer A.J., Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004;36:2445–2462. doi: 10.1016/j.biocel.2004.02.002. [DOI] [PubMed] [Google Scholar]
- [28].Liang X.H., Kleeman L.K., Jiang H.H., Gordon G., Goldman J.E., Berry G., et al. Protection against fetal Sindbis virus encephalitis by Beclin, a novel Bcl-2 interacting protein. J Virol. 1998;72:8586–8596. doi: 10.1128/jvi.72.11.8586-8596.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Elmore S.P., Qian T., Grissom S.F., Lemasters J.J. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 2001;15:2286–2287. doi: 10.1096/fj.01-0206fje. [DOI] [PubMed] [Google Scholar]
- [30].Bauvy C., Gane P., Arico S., Codogno P., Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer line HT-29. Exp Cell Res. 2001;268:139–149. doi: 10.1006/excr.2001.5285. [DOI] [PubMed] [Google Scholar]