Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Jul 19;24(3):125–132. doi: 10.1007/s12264-008-1214-z

Iron contributes to the formation of catechol isoquinolines and oxidative toxicity induced by overdose dopamine in dopaminergic SH-SY5Y cells

铁离子促进过量多巴胺引起 SH-SY5Y 细胞儿茶酚异喹啉物质生成和氧化损伤

Ran Wang 1, Hong Qing 1, Xiao-Qian Liu 1, Xiao-Lin Zheng 1, Yu-Lin Deng 1,
PMCID: PMC5552540  PMID: 18500384

Abstract

Objective

The selective loss of dopaminergic neurons in Parkinson’s disease is suspected to correlate with the increase of cellular iron, which may be involved in the pathogenesis of PD by promotion of oxidative stress. This research investigated dopamine-induced oxidative stress toxicity contributed by iron and the production of dopamine-derived neurotoxins in dopaminergic SH-SY5Y cells.

Methods

After the SH-SY5Y cells were pre-incubated with dopamine and Fe2+ for 24 h, the cell viability, hydroxyl radical, melondialdehyde, cell apoptosis, and catechol isoquinolines were measured by lactate dehydrogenase assay, salicylic acid trapping method, thiobarbuteric acid assay, Hoechst 33258 staining and HPLC-electrochemical detection (HPLC-ECD), respectively.

Results

(1) Optimal dopamine (150 μmol/L) and Fe2+ (40 or 80 μmol/L) significantly increased the concentrations of hydroxy radicals and melondialdehyde in SH-SY5Y cells. (2) Induction with dopamine alone or dopamine and Fe2+ (dopamine/Fe2+) caused cell apoptosis. (3) Compared with untreated cells, the catechol isoquinolines, salsolinol and N-methyl-salsolinol in dopamine/Fe2+-induced cells were detected in increasing amounts.

Conclusion

Due to dopamine/Fe2+-induced oxidative stress similar to the state in the parkinsonian substantia nigra neurons, dopamine and Fe2+ impaired SH-SY5Y cells could be used as the cell oxidative stress model of Parkinson’s disease. The catechol isoquinolines detected in cells may be involved in the pathogenesis of Parkinson’s disease as potential neurotoxins.

Keywords: Parkinson’s disease, Fe2+, dopamine, oxidative stress, salsolinol, N-methyl-salsolinol

Footnotes

The authors contributed equally to this work

References

  • [1].Theil E.C. Ferritin: structure, gene regulation and cellular function in animals, plants and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  • [2].Berg D., Becker G., Riederer P., Riess O. Iron in neurodegenerative disorders. Neurotox Res. 2002;4:637–653. doi: 10.1080/1029842021000045444. [DOI] [PubMed] [Google Scholar]
  • [3].Götz M.E., Double K., Gerlach M., Youdim M.B., Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:193–208. doi: 10.1196/annals.1306.017. [DOI] [PubMed] [Google Scholar]
  • [4].Walter U., Wittstock M., Benecke R., Dressler D. Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson’s disease. J Neural Transm. 2002;109:191–196. doi: 10.1007/s007020200015. [DOI] [PubMed] [Google Scholar]
  • [5].Berg D., Gerlach M., Youdim M.B., Double K.L., Zecca L., Riederer P., et al. Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem. 2001;79:225–236. doi: 10.1046/j.1471-4159.2001.00608.x. [DOI] [PubMed] [Google Scholar]
  • [6].Fahn S., Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32:804–812. doi: 10.1002/ana.410320616. [DOI] [PubMed] [Google Scholar]
  • [7].Jenner P. Oxidative mechanism in nigral cell death in Parkinson’s disease. Mov Disord. 1998;13(Suppl1):24–34. [PubMed] [Google Scholar]
  • [8].Gerlach M., Ben-Shachar D., Riederer P., Youdim M.B. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem. 1994;63:793–807. doi: 10.1046/j.1471-4159.1994.63030793.x. [DOI] [PubMed] [Google Scholar]
  • [9].Teitel S., O’Brien J., Brossi A. Alkaloids in mammalian tissue: 2. Synthesis of (+)-and (−)-/-substituted-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines. J Med Chem. 1972;15:845–846. doi: 10.1021/jm00278a014. [DOI] [PubMed] [Google Scholar]
  • [10].Jen J.F., Leu M.F., Yang T.C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. J Chromatogr A. 1998;796:283–288. doi: 10.1016/S0021-9673(97)01019-4. [DOI] [Google Scholar]
  • [11].Qing H., Xu H., Wei Z., Gibson K., Li X. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci. 2003;17:1563–1570. doi: 10.1046/j.1460-9568.2003.02590.x. [DOI] [PubMed] [Google Scholar]
  • [12].Naoi M., Maruyama W., Akao Y., Yi H. Dopamine-derived endogenous N-methyl-(R)-salsolinol: its role in Parkinson’s disease. Neurotoxicol Teratol. 2002;24:579–591. doi: 10.1016/S0892-0362(02)00211-8. [DOI] [PubMed] [Google Scholar]
  • [13].Kidd P.M. Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev. 2000;5:502–529. [PubMed] [Google Scholar]
  • [14].Sian J., Dexter D.T., Lees A.J., Daniel S., Agid Y., Javoy-Agid F., et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36:348–355. doi: 10.1002/ana.410360305. [DOI] [PubMed] [Google Scholar]
  • [15].Sofic E., Lange K. W., Jellinger K., Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett. 1992;142:128–130. doi: 10.1016/0304-3940(92)90355-B. [DOI] [PubMed] [Google Scholar]
  • [16].Kaur D., Andersen J. Does cellular iron dysregulation play a causative role in Parkinson’s disease? Aging Res Rev. 2004;3:327–343. doi: 10.1016/j.arr.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • [17].Pezzella A., d’Ischia M., Napolitano A., Misuraca G., Prota G. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease. J Med Chem. 1997;40:2211–2216. doi: 10.1021/jm970099t. [DOI] [PubMed] [Google Scholar]
  • [18].Jellinger K., Paulus W., Grundke-Iqbal I., Riederer P., Youdim M.B. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Trans Park Dis Dement Sect. 1990;2:327–340. doi: 10.1007/BF02252926. [DOI] [PubMed] [Google Scholar]
  • [19].Hemdan S., Almazan G. Iron contributes to dopamine-induced toxicity in oligodendrocyte progenitors. Neuropathol Appl Neurobiol. 2006;32:428–440. doi: 10.1111/j.1365-2990.2006.00757.x. [DOI] [PubMed] [Google Scholar]
  • [20].Sandler M., Carter S.B., Hunter K.R., Stern G.M. Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature. 1973;241:439–443. doi: 10.1038/241439a0. [DOI] [PubMed] [Google Scholar]
  • [21].Naoi M., Maruyama W., Nagy G.M. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology. 2004;25:193–204. doi: 10.1016/S0161-813X(03)00099-8. [DOI] [PubMed] [Google Scholar]
  • [22].Maruyama W., Nakahara D., Dostert P., Takahashi T., Naoi M. Naturally-occurring isoquinolines perturb monoamine metabolism in the brain: studies by in vivo microdialysis. J Neural Transs. 1993;94:91–102. doi: 10.1007/BF01245003. [DOI] [PubMed] [Google Scholar]
  • [23].Matsubara K., Ota M., Takahashi T., Maruyama W., Naoi M. Structural studies of condensation products of biogenic amines as inhibitors of tryptophan hydroxylase. Brain Res. 1994;655:121–127. doi: 10.1016/0006-8993(94)91605-5. [DOI] [PubMed] [Google Scholar]
  • [24].Naoi M., Maruyama W., Dostert P., Hashizume Y., Nakahara D., Takahashi T., et al. Dopamine-derived endogenous 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra-hydroisoqunoline, Nmethyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res. 1996;709:285–295. doi: 10.1016/0006-8993(95)01325-3. [DOI] [PubMed] [Google Scholar]
  • [25].Maruyama W., Abe T., Tohgi H., Dostert P., Naoi M. A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Ann Neurol. 1996;40:119–122. doi: 10.1002/ana.410400120. [DOI] [PubMed] [Google Scholar]
  • [26].Naoi M., Maruyama W., Akao Y., Yi H. Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuro-protection by propargylamines. J Neural Transm. 2002;109:607–621. doi: 10.1007/s007020200050. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES