Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Jul 19;24(3):133–142. doi: 10.1007/s12264-008-1225-9

Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: Implication for immunosuppressive therapy in Parkinson’s disease

Jun-Peng Gao 1, Shan Sun 1, Wen-Wei Li 1, Yi-Ping Chen 1, Ding-Fang Cai 1,
PMCID: PMC5552541  PMID: 18500385

Abstract

Objective

Neuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson’s disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP+.

Methods

The rat model of PD was established by intranigral microinjection of MPP+. At baseline and on day 1, 3, 7, 14, 21 following MPP+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry.

Results

Intranigral injection of MPP+ resulted in robust activation of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances.

Conclusion

These data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP+-induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.

Keywords: Parkinson’s disease, triptolide, microglia, neurons

Footnotes

These two authors contributed equally to this work.

References

  • [1].de Lau L.M., Breteler M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9. [DOI] [PubMed] [Google Scholar]
  • [2].Lang A.E., Lozano A.M. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339:1044–1053. doi: 10.1056/NEJM199810083391506. [DOI] [PubMed] [Google Scholar]
  • [3].Zhang H.L., Wu J.J., Ren H.M., Wang J., Su Y.R., Jiang Y.P. Therapeutic effect of microencapsulated porcine retinal pigmented epithelial cells transplantation on rat model of Parkinson’s disease. Neurosci Bull. 2007;23:137–144. doi: 10.1007/s12264-007-0020-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Poewe W. The need for neuroprotective therapies in Parkinson’s disease. Neurology. 2006;66:S2–S9. doi: 10.1159/000096617. [DOI] [PubMed] [Google Scholar]
  • [5].Hauser R.A., Zesiewicz T.A. Clinical trials aimed at detecting neuroprotection in Parkinson’s disease. Neurology. 2006;66:S58–S68. doi: 10.1159/000096624. [DOI] [PubMed] [Google Scholar]
  • [6].Ouchi Y., Yoshikawa E., Sekine Y., Futatsubashi M., Kanno T., Ogusu T., et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–175. doi: 10.1002/ana.20338. [DOI] [PubMed] [Google Scholar]
  • [7].Kim Y.S., Joh T.H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006;38:333–347. doi: 10.1038/emm.2006.40. [DOI] [PubMed] [Google Scholar]
  • [8].Whitton P.S. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007;150:963–976. doi: 10.1038/sj.bjp.0707167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Langston J.W., Forno L.S., Tetrud J., Reeves A.G., Kaplan J.A., Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999;46:598–605. doi: 10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • [10].McGeer P.L., Schwab C., Parent A., Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 2003;54:599–604. doi: 10.1002/ana.10728. [DOI] [PubMed] [Google Scholar]
  • [11].Cicchetti F., Brownell A.L., Williams K., Chen Y.I., Livni E., Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci. 2002;15:991–998. doi: 10.1046/j.1460-9568.2002.01938.x. [DOI] [PubMed] [Google Scholar]
  • [12].Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;23:125–130. doi: 10.1007/s12264-007-0018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Qiu D., Kao P.N. Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook. f. Drugs R D. 2003;4:1–18. doi: 10.2165/00126839-200304010-00001. [DOI] [PubMed] [Google Scholar]
  • [14].Ma J., Dey M., Yang H., Poulev A., Pouleva R., Dorn R., et al. Antiinflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry. 2007;68:1172–1178. doi: 10.1016/j.phytochem.2007.02.021. [DOI] [PubMed] [Google Scholar]
  • [15].Liu Q.Y., Chen T.Y., Chen G.Y., Shu X.L., Sun A., Ma P.C., et al. Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappa B pathways. Mol Immunol. 2007;44:2686–2696. doi: 10.1016/j.molimm.2006.12.003. [DOI] [PubMed] [Google Scholar]
  • [16].Li F.Q., Lu X.Z., Liang X.B., Zhou H.F., Xue B., Liu X.Y., et al. Triptolide, a Chinese herbal extract, protects dopaminergic neurons from inflammation-mediated damage through inhibition of microglial activation. J Neuroimmunol. 2004;148:24–31. doi: 10.1016/j.jneuroim.2003.10.054. [DOI] [PubMed] [Google Scholar]
  • [17].Zhou H.F., Liu X.Y., Niu D.B., Li F.Q., He Q.H., Wang X.M. Triptolide protects dopaminergic neurons from inflammation-mediated damage lipopolysaccharide intranigral induced by injection. Neurobiol Dis. 2005;18:441–449. doi: 10.1016/j.nbd.2004.12.005. [DOI] [PubMed] [Google Scholar]
  • [18].Maharaj D.S., Saravanan K.S., Maharaj H., Mohanakumar K.P., Daya S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem Int. 2004;44:355–360. doi: 10.1016/S0197-0186(03)00170-0. [DOI] [PubMed] [Google Scholar]
  • [19].Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 5th ed. Sydney: Elsevier Academic Press; 2005. [Google Scholar]
  • [20].Truong L., Allbutt H., Kassiou M., Henderson J.M. Developing a preclinical model of Parkinson’s disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res. 2006;169:1–9. doi: 10.1016/j.bbr.2005.11.026. [DOI] [PubMed] [Google Scholar]
  • [21].Olsson M., Nikkhah G., Bentlage C., Bjorklund A. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci. 1995;15:3863–3875. doi: 10.1523/JNEUROSCI.15-05-03863.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Tillerson J.L., Cohen A.D., Philhower J., Miller G.W., Zigmond M.J., Schallert T. Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci. 2001;21:4427–4435. doi: 10.1523/JNEUROSCI.21-12-04427.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Tillerson J.L., Caudle W.M., Reveron M.E., Miller G.W. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience. 2003;119:899–911. doi: 10.1016/S0306-4522(03)00096-4. [DOI] [PubMed] [Google Scholar]
  • [24].Hua Y., Schallert T., Keep R.F., Wu J., Hoff J.T., Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;33:2478–2484. doi: 10.1161/01.STR.0000032302.91894.0F. [DOI] [PubMed] [Google Scholar]
  • [25].Monville C., Torres E.M., Dunnett S.B. Validation of the l-dopainduced dyskinesia in the 6-OHDA model and evaluation of the effects of selective dopamine receptor agonists and antagonists. Brain Res Bull. 2005;68:16–23. doi: 10.1016/j.brainresbull.2004.10.011. [DOI] [PubMed] [Google Scholar]
  • [26].Sun S., Cao H., Han M., Li T.T., Pan H.L., Zhao Z.Q., et al. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain. 2007;129:64–75. doi: 10.1016/j.pain.2006.09.035. [DOI] [PubMed] [Google Scholar]
  • [27].Vaananen A.J., Rauhala P., Tuominen R.K., Liesi P. KDI tripeptide of gamma 1 laminin protects rat dopaminergic neurons from 6-OHDA induced toxicity. J Neurosci Res. 2006;84:655–665. doi: 10.1002/jnr.20961. [DOI] [PubMed] [Google Scholar]
  • [28].Liu B., Hong J.S. Role of microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304:1–7. doi: 10.1124/jpet.102.035048. [DOI] [PubMed] [Google Scholar]
  • [29].Miwa H., Kubo T., Morita S., Nakanishi I., Kondo T. Oxidative stress and microglial activation in substantia nigra following striatal MPP+ Neuroreport. 2004;15:1039–1044. doi: 10.1097/00001756-200404290-00021. [DOI] [PubMed] [Google Scholar]
  • [30].Deumens R., Blokland A., Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002;175:303–317. doi: 10.1006/exnr.2002.7891. [DOI] [PubMed] [Google Scholar]
  • [31].Banerjee R., Sreetama S., Saravanan K.S., Dey S.N., Mohanakumar K.P. Apoptotic mode of cell death in substantia nigra following intranigral infusion of the parkinsonian neurotoxin, MPP+ in sprague-dawley rats: Cellular, molecular and ultrastructural evidences. Neurochem Res. 2007;32:1238–1247. doi: 10.1007/s11064-007-9299-8. [DOI] [PubMed] [Google Scholar]
  • [32].Du Y., Ma Z., Lin S., Dodel R.C., Gao F., Bales K.R., et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2001;98:14669–14674. doi: 10.1073/pnas.251341998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Wu D.C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002;22:1763–1771. doi: 10.1523/JNEUROSCI.22-05-01763.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Langston J.W., Ballard P., Tetrud J.W., Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–980. doi: 10.1126/science.6823561. [DOI] [PubMed] [Google Scholar]
  • [35].Chen X.W., Sun S.G., Cheng D.B., Tian Y.Y. Overexpression of 14-3-3 protein protects pheochromocytoma cells against 1-methyl-4-phenylpyridinium toxicity. Neurosci Bull. 2006;22:281–287. [PubMed] [Google Scholar]
  • [36].Samantaray S., Chandra G., Mohanakumar K.P. Calcium channel agonist, (+/−)-Bay K8644, causes a transient increase in striatal monoamine oxidase activity in Balb/c mice. Neurosci Lett. 2003;342:73–76. doi: 10.1016/S0304-3940(03)00238-6. [DOI] [PubMed] [Google Scholar]
  • [37].Przedborski S., Vila M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci. 2003;991:189–198. [PubMed] [Google Scholar]
  • [38].Hunot S., Hirsch E.C. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol. 2003;53:S49–S58. doi: 10.1002/ana.10481. [DOI] [PubMed] [Google Scholar]
  • [39].Hirsch E.C., Hunot S., Hartmann A. Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11:S9–S15. doi: 10.1016/j.parkreldis.2004.10.013. [DOI] [PubMed] [Google Scholar]
  • [40].Vijitruth R., Liu M., Choi D.Y., Nguyen X.V., Hunter R.L., Bing G. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation. 2006;3:6. doi: 10.1186/1742-2094-3-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Kim S.U., de Vellis J. Microglia in health and disease. J Neurosci Res. 2005;81:302–313. doi: 10.1002/jnr.20562. [DOI] [PubMed] [Google Scholar]
  • [42].Teismann P., Tieu K., Cohen O., Choi D.K., Wu D.C., Marks D., et al. Pathogenic role of glial cells in Parkinson’s disease. Mov Disord. 2003;18:121–129. doi: 10.1002/mds.10332. [DOI] [PubMed] [Google Scholar]
  • [43].Youdim M.B., Grunblatt E., Levites Y., Maor G., Mandel S. Early and late molecular events in neurodegeneration and neuroprotection in Parkinson’s disease MPTP model as assessed by cDNA microarray; the role of iron. Neurotox Res. 2002;4:679–689. doi: 10.1080/1029842021000045507. [DOI] [PubMed] [Google Scholar]
  • [44].Goralski K.B., Renton K.W. Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats. Toxicol Appl Pharmacol. 2004;196:381–389. doi: 10.1016/j.taap.2003.12.022. [DOI] [PubMed] [Google Scholar]
  • [45].Zhu X.Z., Li X.Y., Liu J. Recent pharmacological studies on natural products in China. Eur J Pharmacol. 2004;500:221–230. doi: 10.1016/j.ejphar.2004.07.027. [DOI] [PubMed] [Google Scholar]
  • [46].Teismann P., Tieu K., Choi D.K., Wu D.C., Naini A., Hunot S., et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100:5473–5478. doi: 10.1073/pnas.0837397100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Wang T., Pei Z., Zhang W., Liu B., Langenbach R., Lee C., et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J. 2005;19:1134–1136. doi: 10.1096/fj.04-2370com. [DOI] [PubMed] [Google Scholar]
  • [48].Shie F.S., Montine K.S., Breyer R.M., Montine T.J. Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia. 2005;52:70–77. doi: 10.1002/glia.20220. [DOI] [PubMed] [Google Scholar]
  • [49].Feng Z.H., Wang T.G., Li D.D., Fung P., Wilson B.C., Liu B., et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett. 2002;329:354–358. doi: 10.1016/S0304-3940(02)00704-8. [DOI] [PubMed] [Google Scholar]
  • [50].Sanchez-Pernaute R., Ferree A., Cooper O., Yu M., Brownell A.L., Isacson O. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation. 2004;1:6. doi: 10.1186/1742-2094-1-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Dai Y.Q., Jin D.Z., Zhu X.Z., Lei D.L. Triptolide inhibits COX-2 expression via NF-kappa B pathway in astrocytes. Neurosci Res. 2006;55:154–160. doi: 10.1016/j.neures.2006.02.013. [DOI] [PubMed] [Google Scholar]
  • [52].Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318:215–224. doi: 10.1007/s00441-004-0938-y. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES