Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Jul 19;24(3):150. doi: 10.1007/s12264-008-1702-1

Effect of resuscitation after selective cerebral ultraprofound hypothermia on expressions of nerve growth factor and glial cell line-derived neurotrophic factor in the brain of monkey

选择性超深低温断血流复苏促进猴脑中神经生长因子和胶质细胞源性神经营养因子的表达

Xue-Cai Huang 1, Wei Xu 2,, Ji-Yao Jiang 3
PMCID: PMC5552545  PMID: 18500387

Abstract

Objective

To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion.

Methods

The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P < 0.05.

Results

The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P < 0.05).

Conclusion

NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.

Keywords: nerve growth factor, glial cell line-derived neurotrophicfactor, ultraprofound hypothermic circulatory arrest, resuscitation, monkey brain

References

  • [1].Ohta T., Sakaguchi I., Dong L.W., Nagasawa S., Yasuda A. Selective cooling of brain using profound hemodilution in dogs. Neurosurgery. 1992;31:1049–1055. doi: 10.1097/00006123-199212000-00010. [DOI] [PubMed] [Google Scholar]
  • [2].Price T.J., Louria M.D., Candelario-Soto D., Dussor G.O., Jeske N.A., Patwardhan A.M., et al. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci. 2005;6:4–18. doi: 10.1186/1471-2202-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Petruska J.C., Mendell L.M. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett. 2004;361:168–171. doi: 10.1016/j.neulet.2003.12.012. [DOI] [PubMed] [Google Scholar]
  • [4].Jiang J.Y., Xu W., Yang P.F., Gao G.Y., Gao Y.G., Liang Y.M., et al. Marked protection by selective cerebral profound hypothermia after complete cerebral ischemia in primates. J Neurotrauma. 2006;23:1847–1856. doi: 10.1089/neu.2006.23.1847. [DOI] [PubMed] [Google Scholar]
  • [5].Caba M., Bao J., Pau K.Y., Spies H.G. Molecular activation of noradrenergic neurons in the rabbit brainstem after coitus. Brain Res Mol Brain Res. 2000;77:222–231. doi: 10.1016/S0169-328X(00)00055-3. [DOI] [PubMed] [Google Scholar]
  • [6].Whitlon D.S., Szakaly R., Greiner M.A. Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Brain Res Protoc. 2001;6:159–166. doi: 10.1016/S1385-299X(00)00048-9. [DOI] [PubMed] [Google Scholar]
  • [7].Yang X.D., Liu Z., Liu H.X., Wang L.H., Ma C.H., Li Z.Z. Regulatory effect of nerve growth factor on release of substance P in cultured dorsal root ganglion neurons of rat. Neurosci Bull. 2007;23:215–220. doi: 10.1007/s12264-007-0032-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Su Y.R., Wang J., Wu J.J., Chen Y., Jiang Y.P. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull. 2007;23:67–74. doi: 10.1007/s12264-007-0010-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Chen K.S., Nishimura M.C., Armanini M.P., Crowley C., Spencer S.D., Phillips H.S. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17:7288–7296. doi: 10.1523/JNEUROSCI.17-19-07288.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Nicholson D.W., Ali A., Thornberry N.A., Vaillancourt J.P., Ding C.K., Gallant M., et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  • [11].Eldadah B.A., Faden A.I. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000;17:811–829. doi: 10.1089/neu.2000.17.811. [DOI] [PubMed] [Google Scholar]
  • [12].Gurney M.E., Tomasselli A.G., Heinrikson R.L. Neurobiology. Stay the executioner’s hand. Science. 2000;288:283–284. doi: 10.1126/science.288.5464.283. [DOI] [PubMed] [Google Scholar]
  • [13].Armstrong R.C., Aja T.J., Hoang K.D., Gaur S., Bai X., Alnemri E.S., et al. Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci. 1997;17:553–562. doi: 10.1523/JNEUROSCI.17-02-00553.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Yanamoto H., Mizuta I., Nagata I., Xue J., Zhang Z., Kikuchi H. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res. 2000;877:331–344. doi: 10.1016/S0006-8993(00)02718-9. [DOI] [PubMed] [Google Scholar]
  • [15].Ramer M.S., Priestley J.V., McMahon S.B. Functional regeneration of seneory axons into the adult spinal cord. Nature. 2000;403:312–316. doi: 10.1038/35002084. [DOI] [PubMed] [Google Scholar]
  • [16].Lehmann M., Fournier A., Selles-Navarro I., Dergham P., Sebok A., Leclerc N., et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 1999;19:7537–7547. doi: 10.1523/JNEUROSCI.19-17-07537.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Igari T., Hoshino S., Iwaya F., Ando S. Cerebral blood flow and oxygen metabolism during cardiopulmonary bypass with moderate hypothermic selective cerebral perfusion. Cardiovasc Surg. 1999;7:106–111. doi: 10.1016/S0967-2109(98)00092-1. [DOI] [PubMed] [Google Scholar]
  • [18].Ding Y., Li J., Luan X., Ding Y.H., Lai Q., Rafols J.A., et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124:583–591. doi: 10.1016/j.neuroscience.2003.12.029. [DOI] [PubMed] [Google Scholar]
  • [19].Truettner J., Busto R., Zhao W., Ginsberg M.D., Pérez-Pinzón M.A. Effect of ischemic precond-itioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res. 2002;103:106–115. doi: 10.1016/S0169-328X(02)00191-2. [DOI] [PubMed] [Google Scholar]
  • [20].Li Q.Y., Cheng G.Y., Pu P.Y., Zhang R.Z., Lian H., Jiang D.H. Changes of GDNF mRNA expression in rat brain following cerebral ischemia reperfusion. Chin J Neurosci. 1999;15:243–246. [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES