Abstract
Objective
To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion.
Methods
The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P < 0.05.
Results
The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P < 0.05).
Conclusion
NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.
Keywords: nerve growth factor, glial cell line-derived neurotrophicfactor, ultraprofound hypothermic circulatory arrest, resuscitation, monkey brain
摘要
目的
观察常温缺血10 min后选择性超深低温断血流复苏后猴脑中神经生长因子(nerve growth factor, NGF)和胶质细胞源性神经营养因子(glial cell line-derived neurotrophicfactor, GDNF)表达的变化。
方法
等温组及超深低温组实验猴于灌注或复苏死亡后立即开颅取脑, 用NGF和GDNF抗体进行免疫组化染色;对额叶恒定视野内NGF和GDNF 的阳性细胞记数求阳性率, 并统计学分析。
结果
等温组2 只实验猴额叶NGF 和GDNF 有微量表达, 超深低温组4 只实验猴额叶NGF 和GDNF 表达明显上调, 与等温组比较差异均极显著(P < 0.01)。
结论
猴脑选择性超深低温断血流复苏实验可引起NGF和GDNF表达上调, 这可能是防止脑缺血的重要保护机制之一。
关键词: 神经生长因子, 胶质细胞源性神经营养因子, 超深低温断血流, 复苏, 猴脑
References
- [1].Ohta T., Sakaguchi I., Dong L.W., Nagasawa S., Yasuda A. Selective cooling of brain using profound hemodilution in dogs. Neurosurgery. 1992;31:1049–1055. doi: 10.1097/00006123-199212000-00010. [DOI] [PubMed] [Google Scholar]
- [2].Price T.J., Louria M.D., Candelario-Soto D., Dussor G.O., Jeske N.A., Patwardhan A.M., et al. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC Neurosci. 2005;6:4–18. doi: 10.1186/1471-2202-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Petruska J.C., Mendell L.M. The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett. 2004;361:168–171. doi: 10.1016/j.neulet.2003.12.012. [DOI] [PubMed] [Google Scholar]
- [4].Jiang J.Y., Xu W., Yang P.F., Gao G.Y., Gao Y.G., Liang Y.M., et al. Marked protection by selective cerebral profound hypothermia after complete cerebral ischemia in primates. J Neurotrauma. 2006;23:1847–1856. doi: 10.1089/neu.2006.23.1847. [DOI] [PubMed] [Google Scholar]
- [5].Caba M., Bao J., Pau K.Y., Spies H.G. Molecular activation of noradrenergic neurons in the rabbit brainstem after coitus. Brain Res Mol Brain Res. 2000;77:222–231. doi: 10.1016/S0169-328X(00)00055-3. [DOI] [PubMed] [Google Scholar]
- [6].Whitlon D.S., Szakaly R., Greiner M.A. Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Brain Res Protoc. 2001;6:159–166. doi: 10.1016/S1385-299X(00)00048-9. [DOI] [PubMed] [Google Scholar]
- [7].Yang X.D., Liu Z., Liu H.X., Wang L.H., Ma C.H., Li Z.Z. Regulatory effect of nerve growth factor on release of substance P in cultured dorsal root ganglion neurons of rat. Neurosci Bull. 2007;23:215–220. doi: 10.1007/s12264-007-0032-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Su Y.R., Wang J., Wu J.J., Chen Y., Jiang Y.P. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull. 2007;23:67–74. doi: 10.1007/s12264-007-0010-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Chen K.S., Nishimura M.C., Armanini M.P., Crowley C., Spencer S.D., Phillips H.S. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17:7288–7296. doi: 10.1523/JNEUROSCI.17-19-07288.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Nicholson D.W., Ali A., Thornberry N.A., Vaillancourt J.P., Ding C.K., Gallant M., et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995;376:37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
- [11].Eldadah B.A., Faden A.I. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000;17:811–829. doi: 10.1089/neu.2000.17.811. [DOI] [PubMed] [Google Scholar]
- [12].Gurney M.E., Tomasselli A.G., Heinrikson R.L. Neurobiology. Stay the executioner’s hand. Science. 2000;288:283–284. doi: 10.1126/science.288.5464.283. [DOI] [PubMed] [Google Scholar]
- [13].Armstrong R.C., Aja T.J., Hoang K.D., Gaur S., Bai X., Alnemri E.S., et al. Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis. J Neurosci. 1997;17:553–562. doi: 10.1523/JNEUROSCI.17-02-00553.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Yanamoto H., Mizuta I., Nagata I., Xue J., Zhang Z., Kikuchi H. Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res. 2000;877:331–344. doi: 10.1016/S0006-8993(00)02718-9. [DOI] [PubMed] [Google Scholar]
- [15].Ramer M.S., Priestley J.V., McMahon S.B. Functional regeneration of seneory axons into the adult spinal cord. Nature. 2000;403:312–316. doi: 10.1038/35002084. [DOI] [PubMed] [Google Scholar]
- [16].Lehmann M., Fournier A., Selles-Navarro I., Dergham P., Sebok A., Leclerc N., et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 1999;19:7537–7547. doi: 10.1523/JNEUROSCI.19-17-07537.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Igari T., Hoshino S., Iwaya F., Ando S. Cerebral blood flow and oxygen metabolism during cardiopulmonary bypass with moderate hypothermic selective cerebral perfusion. Cardiovasc Surg. 1999;7:106–111. doi: 10.1016/S0967-2109(98)00092-1. [DOI] [PubMed] [Google Scholar]
- [18].Ding Y., Li J., Luan X., Ding Y.H., Lai Q., Rafols J.A., et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004;124:583–591. doi: 10.1016/j.neuroscience.2003.12.029. [DOI] [PubMed] [Google Scholar]
- [19].Truettner J., Busto R., Zhao W., Ginsberg M.D., Pérez-Pinzón M.A. Effect of ischemic precond-itioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res. 2002;103:106–115. doi: 10.1016/S0169-328X(02)00191-2. [DOI] [PubMed] [Google Scholar]
- [20].Li Q.Y., Cheng G.Y., Pu P.Y., Zhang R.Z., Lian H., Jiang D.H. Changes of GDNF mRNA expression in rat brain following cerebral ischemia reperfusion. Chin J Neurosci. 1999;15:243–246. [Google Scholar]