Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Aug 5;25(4):167–178. doi: 10.1007/s12264-009-0324-6

Observation of the density and size of cells in hippocampus and vascular lesion in thalamus of GFAP-apoE transgenic mice

GFAP-apoE 转基因小鼠海马细胞密度和大小以及丘脑血管损伤的观察

Ke-Feng Tang 1, Li Cai 1,2, Jiang-Ning Zhou 1,
PMCID: PMC5552552  PMID: 19633698

Abstract

Objective

Apolipoprotein E (apoE) is associated with increased risk of age-related diseases, such as Alzheimer’s disease (AD) and cerebrovascular disease (CVD). The present study aims to investigate the age-related general morphological changes of the brain in GFAP-apoE transgenic mice, especially the alterations in number and size of hippocampal pyramidal cells and the microvascular lesions in the thalamus.

Methods

Nine female apoE4/4 mice were divided into 3 groups (n=3 in each group): 3–4 months (young group), 9–10 months (middle-aged group) and 20–21 months (old group). Age-matched apoE3/3 mice were employed as control group (n=3 in each group). The paraffin sections of brain tissue were stained by 2 conventional staining methods, thionin staining and hematoxylin-esion(HE) staining, the former of which was to observe the hippocampal cells, while the latter was used to examine the brain microvasculature.

Results

There was no apparent difference in the cortical layer between apoE3/3 and apoE4/4 mice, neither any significant difference in the number of cells in hippocampal CA1–CA3 subfields between apoE3/3 and apoE4/4 mice at various age points (P > 0.05). However, the mean size of pyramidal cells in CA1 subfield in apoE3/3 and apoE4/4 mice decreased as mice were getting older (P < 0.001). At the age of 20–21 months, this cellular atrophy in apoE4/4 mice was more severe than that in old apoE3/3 mice (P < 0.05). Furthermore, microvascular lesion in the thalamus was detected in all the 3 old apoE4/4 mice, at varying degrees (5.24%, 1.41% and 3.97%, respectively), while only one apoE3/3 mouse exhibited microvascular lesion in the thalamus, at a low level (0.85%).

Conclusion

The current study suggests that the cell size in hippocampal CA1 subfield decreases with aging, irrespective of apoE genotype. Cellular atrophy in CA1 subfield and the microvascular lesion in the thalamus are both more severe in old apoE4/4 mice as compared with those in age-matched apoE3/3 mice. Doubts still exist on whether the decreased cell size in hippocampal CA1 subfield in old apoE4/4 mice is associated with dysfunction in learning and memory and whether the microvascular lesions indicate a higher risk of stroke in human apoE4 allele mice. To clarify these issues, further investigations are needed.

Keywords: apolipoprotein E, aging, microvascular lesion, Alzheimer’s disease

References

  • [1].Mahley R.W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  • [2].Driscoll D.M., Getz G.S. Extrahepatic synthesis of apolipoprotein E. J Lipid Res. 1984;25(12):1368–1379. [PubMed] [Google Scholar]
  • [3].Elshourbagy N.A., Liao W.S., Mahley R.W., Taylor J.M. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A. 1985;82(1):203–207. doi: 10.1073/pnas.82.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Weisgraber K.H., Rall S.C., Jr, Mahley R.W., Human E. apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981;256(17):9077–9083. [PubMed] [Google Scholar]
  • [5].Weisgraber K.H., Mahley R.W. Human apolipoprotein E: the Alzheimer’s disease connection. Faseb J. 1996;10(13):1485–1494. doi: 10.1096/fasebj.10.13.8940294. [DOI] [PubMed] [Google Scholar]
  • [6].Hatters D.M., Peters-Libeu C.A., Weisgraber K.H. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31(8):445–454. doi: 10.1016/j.tibs.2006.06.008. [DOI] [PubMed] [Google Scholar]
  • [7].Saunders A.M., Strittmatter W.J., Schmechel D., George-Hyslop P.H., Pericak-Vance M.A., Joo S.H., et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–1472. doi: 10.1212/wnl.43.8.1467. [DOI] [PubMed] [Google Scholar]
  • [8].Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  • [9].Alberts M.J., Graffagnino C., McClenny C., DeLong D., Saunders A.M., et al. ApoE genotype and survival from intracerebral haemorrhage. Lancet. 1995;346(8974):575. doi: 10.1016/S0140-6736(95)91411-0. [DOI] [PubMed] [Google Scholar]
  • [10].Tardiff B.E., Newman M.F., Saunders A.M., Strittmatter W.J., Blumenthal J.A., White W.D., et al. Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg. 1997;64(3):715–720. doi: 10.1016/S0003-4975(97)00757-1. [DOI] [PubMed] [Google Scholar]
  • [11].Slooter A.J., Tang M.X., van Duijn C.M., Stern Y., Ott A., Bell K., et al. Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. Jama. 1997;277(10):818–821. doi: 10.1001/jama.277.10.818. [DOI] [PubMed] [Google Scholar]
  • [12].Piedrahita J.A., Zhang S.H., Hagaman J.R., Oliver P.M., Maeda N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A. 1992;89(10):4471–4475. doi: 10.1073/pnas.89.10.4471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Plump A.S., Smith J.D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J.G., et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71(2):343–353. doi: 10.1016/0092-8674(92)90362-G. [DOI] [PubMed] [Google Scholar]
  • [14].Masliah E., Mallory M., Ge N., Alford M., Veinbergs I., Roses A.D. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol. 1995;136(2):107–122. doi: 10.1006/exnr.1995.1088. [DOI] [PubMed] [Google Scholar]
  • [15].Fullerton S.M., Shirman G.A., Strittmatter W.J., Matthew W.D. Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol. 2001;169(1):13–22. doi: 10.1006/exnr.2001.7631. [DOI] [PubMed] [Google Scholar]
  • [16].Laskowitz D.T., Sheng H., Bart R.D., Joyner K.A., Roses A.D., Warner D.S. Apolipoprotein E-deficient mice have increased susceptibility to focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(7):753–758. doi: 10.1097/00004647-199707000-00005. [DOI] [PubMed] [Google Scholar]
  • [17].Tesseur I., Van Dorpe J., Spittaels K., Van den Haute C., Moechars D., Van Leuven F. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol. 2000;156(3):951–964. doi: 10.1016/S0002-9440(10)64963-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Raber J., Wong D., Buttini M., Orth M., Bellosta S., Pitas R.E., et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A. 1998;95(18):10914–10919. doi: 10.1073/pnas.95.18.10914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Sun Y., Wu S., Bu G., Onifade M.K., Patel S.N., LaDu M.J., et al. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci. 1998;18(9):3261–3272. doi: 10.1523/JNEUROSCI.18-09-03261.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Hartman R.E., Wozniak D.F., Nardi A., Olney J.W., Sartorius L., Holtzman D.M. Behavioral phenotyping of GFAP-apoE3 and — apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer’s-like neuropathology. Exp Neurol. 2001;170(2):326–344. doi: 10.1006/exnr.2001.7715. [DOI] [PubMed] [Google Scholar]
  • [21].Buttini M., Orth M., Bellosta S., Akeefe H., Pitas R.E., Wyss-Coray T., et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/-mice: isoform-specific effects on neurodegeneration. J Neurosci. 1999;19(12):4867–4880. doi: 10.1523/JNEUROSCI.19-12-04867.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Bermejo-Pareja F., Benito-León J., Vega S., Medrano M.J., Román G.C., Neurological Disorders in Central Spain Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci. 2008;264(1–2):63–72. doi: 10.1016/j.jns.2007.07.021. [DOI] [PubMed] [Google Scholar]
  • [23].Di Carlo A., Baldereschi M., Amaducci L., Lepore V., Bracco L., Maggi S., et al. Incidence of dementia, Alzheimer’s disease, and vascular dementia in Italy. The ILSA Study. J Am Geriatr Soc. 2002;50(1):41–48. doi: 10.1046/j.1532-5415.2002.50006.x. [DOI] [PubMed] [Google Scholar]
  • [24].Deary I.J., Wright A.F., Harris S.E., Whalley L.J., Starr J.M. Searching for genetic influences on normal cognitive ageing. Trends Cogn Sci. 2004;8(4):178–184. doi: 10.1016/j.tics.2004.02.008. [DOI] [PubMed] [Google Scholar]
  • [25].Hixson J.E., Vernier D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–548. [PubMed] [Google Scholar]
  • [26].Esiri M.M. Aging and the brain. J Pathol. 2007;211(2):181–187. doi: 10.1002/path.2089. [DOI] [PubMed] [Google Scholar]
  • [27].Jessberger S., Gage F.H. Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging. 2008;23(4):684–691. doi: 10.1037/a0014188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Mahley R.W., Huang Y. Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr Opin Lipidol. 1999;10(3):207–217. doi: 10.1097/00041433-199906000-00003. [DOI] [PubMed] [Google Scholar]
  • [29].Buée L., Hof P.R., Delacourte A. Brain microvascular changes in Alzheimer’s disease and other dementias. Ann N Y Acad Sci. 1997;826:7–24. doi: 10.1111/j.1749-6632.1997.tb48457.x. [DOI] [PubMed] [Google Scholar]
  • [30].Mancardi G.L., Perdelli F., Rivano C., Leonardi A., Bugiani O. Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropathol. 1980;49(1):79–83. doi: 10.1007/BF00692225. [DOI] [PubMed] [Google Scholar]
  • [31].Scheibel A.B., Duong T.H., Jacobs R. Alzheimer’s disease as a capillary dementia. Ann Med. 1989;21(2):103–107. doi: 10.3109/07853898909149194. [DOI] [PubMed] [Google Scholar]
  • [32].de Jong G.I., de Weerd H., Schuurman T., Traber J., Luiten P.G. Microvascular changes in aged rat forebrain. Effects of chronic nimodipine treatment. Neurobiol Aging. 1990;11(4):381–389. doi: 10.1016/0197-4580(90)90003-I. [DOI] [PubMed] [Google Scholar]
  • [33].de Jong G.I., Jansen A.S., Horvath E., Gispen W.H., Luiten P.G. Nimodipine effects on cerebral microvessels and sciatic nerve in aging rats. Neurobiol Aging. 1992;13(1):73–81. doi: 10.1016/0197-4580(92)90012-M. [DOI] [PubMed] [Google Scholar]
  • [34].Keuker J.I., Luiten P.G., Fuchs E. Capillary changes in hippocampal CA1 and CA3 areas of the aging rhesus monkey. Acta Neuropathol. 2000;100(6):665–672. doi: 10.1007/s004010000227. [DOI] [PubMed] [Google Scholar]
  • [35].Whael K., Stefanache F., Hodorog D.N. Clinical and prognostic considerations in thalamic hemorrhage. Clinical study on 117 cases. Rev Med Chir Soc Med Nat Iasi. 2008;113(2):366–370. [PubMed] [Google Scholar]
  • [36].Farkas E., Luiten P.G. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611. doi: 10.1016/S0301-0082(00)00068-X. [DOI] [PubMed] [Google Scholar]
  • [37].Erusalimsky J.D., Skene C. Mechanisms of endothelial senescence. Exp Physiol. 2009;94(3):299–304. doi: 10.1113/expphysiol.2008.043133. [DOI] [PubMed] [Google Scholar]
  • [38].Shah G.N., Mooradian A.D. Age-related changes in the blood-brain barrier. Exp Gerontol. 1997;32(4–5):501–519. doi: 10.1016/S0531-5565(96)00158-1. [DOI] [PubMed] [Google Scholar]
  • [39].Casserly I., Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet. 2004;363(9415):1139–1146. doi: 10.1016/S0140-6736(04)15900-X. [DOI] [PubMed] [Google Scholar]
  • [40].Downs J.R., Clearfield M., Weis S., Whitney E., Shapiro D.R., Beere P.A., et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. Jama. 1998;279(20):1615–1622. doi: 10.1001/jama.279.20.1615. [DOI] [PubMed] [Google Scholar]
  • [41].Eichner J.E., Kuller L.H., Orchard T.J., Grandits G.A., McCallum L.M., Ferrell R.E., et al. Relation of apolipoprotein E phenotype to myocardial infarction and mortality from coronary artery disease. Am J Cardiol. 1993;71(2):160–165. doi: 10.1016/0002-9149(93)90732-R. [DOI] [PubMed] [Google Scholar]
  • [42].Wang C.X., Shuaib A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol. 2007;83(3):140–148. doi: 10.1016/j.pneurobio.2007.07.006. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES