Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Aug 5;25(4):221–227. doi: 10.1007/s12264-009-0506-2

Research progress in transient receptor potential vanilloid 1 of sensory nervous system

感觉神经系统TRPV1 受体的研究进展

Da-Lu Liu 1, Wen-Ting Wang 2, Jun-Ling Xing 2, San-Jue Hu 2,
PMCID: PMC5552554  PMID: 19633705

Abstract

The transient receptor potential vanilloid subfamily member 1 (TRPV1) is a protein mainly expressed in sensory neurons and fibers, such as in trigeminal ganglion and dorsal root ganglion, and has been indicated to be involved in several physiological and pathological processes. Studies on thermal activation have revealed that phosphorylation is involved in TRPV1 activation and 2 putative phosphorylation sites, Ser residues 502 (Ser-502) and Ser residues 800 (Ser-800), have been recently confirmed to possess the capability of resensitizing TRPV1. In addition to acidification, alkalization has also been proved to be a highly effective stimulator for TRPV1. TRPV1 could be regulated by various physical and chemical modulators, as well as the chronic pain. TRPV1 plays a crucial role in the transmission of pain signals, especially under inflammation and the neoplasm conditions, and it can also modulate nociceptive afferents by reinforcing morphine tolerance. The present review mainly focused on the structural and functional complexities of TRPV1, together with its activation and modulation by a wide variety of physical and chemical stimuli. Its pharmacological manipulation (sensitization/desensitization) and therapeutical targets were also discussed.

Keywords: TRPV1, sensory nervous system, pain, thermal, phosphorylation, alkalization

References

  • [1].Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D., Julius D. The capsaicin receptor: a heat activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. [DOI] [PubMed] [Google Scholar]
  • [2].Szallasi A., Blumberg M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51:159–211. [PubMed] [Google Scholar]
  • [3].Ramsey I.S., Delling M., Clapham D.E. An introduction to TRP channels. Anna Rev Physiol. 2006;68:619–647. doi: 10.1146/annurev.physiol.68.040204.100431. [DOI] [PubMed] [Google Scholar]
  • [4].Mandadi S., Tominaga T., Numazaki M., Murayama N., Saito N., Armati P.J., et al. Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCδ-mediated phosphorylation at S800. Pain. 2006;123:106–116. doi: 10.1016/j.pain.2006.02.016. [DOI] [PubMed] [Google Scholar]
  • [5].Pedersen S.F., Owsianik G., Nilius B. TRP channels: An overview. Cell Calcium. 2005;38:233–252. doi: 10.1016/j.ceca.2005.06.028. [DOI] [PubMed] [Google Scholar]
  • [6].Dedov V.N., Roufogalis B.D. Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons. Neuroscience. 2000;95:183–188. doi: 10.1016/S0306-4522(99)00423-6. [DOI] [PubMed] [Google Scholar]
  • [7].Fu M., Xie Z.P., Zuo H.C. TRPV1: A potential target for antiepileptogenesis. Med Hypotheses. 2009;73:100–102. doi: 10.1016/j.mehy.2009.01.005. [DOI] [PubMed] [Google Scholar]
  • [8].Kim S.R., Chung Y.C., Chung E.S., Park K.W., Won S.Y., Bok E., et al. Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: neuroprotection versus neurotoxicity. Mol Neurobiol. 2007;35(3):245–254. doi: 10.1007/s12035-007-0030-1. [DOI] [PubMed] [Google Scholar]
  • [9].Bridges D., Rice A.S., Egertova M., Elphick M.R., Winter J., Michael G.J. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience. 2003;119:803–812. doi: 10.1016/S0306-4522(03)00200-8. [DOI] [PubMed] [Google Scholar]
  • [10].Elg S., Marmigere F., Mattsson J.P., Ernfors P. Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol. 2007;503:35–46. doi: 10.1002/cne.21351. [DOI] [PubMed] [Google Scholar]
  • [11].Nakagawa H., Hiura A. Capsaicin, transient receptor potential (TRP) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Anat Sci Int. 2006;81(3):135–155. doi: 10.1111/j.1447-073X.2006.00141.x. [DOI] [PubMed] [Google Scholar]
  • [12].Hong S., Agresta L., Guo C., Wiley J.W. The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy. J Neurochem. 2008;105:1212–1222. doi: 10.1111/j.1471-4159.2008.05220.x. [DOI] [PubMed] [Google Scholar]
  • [13].Calixto J.B., Kassuya C.A., André E., Ferreira J. Contribution of natural products to the discovery of the transient receptor potential (TRP) channels family and their functions. Pharmacol Ther. 2005;106:179–208. doi: 10.1016/j.pharmthera.2004.11.008. [DOI] [PubMed] [Google Scholar]
  • [13].Voets T., Droogmans G., Wissenbach U., Janssens A., Flockerzi V., Nilius B. The principle of temperature-dependent gating in cold and heat-sensitive TRP channels. Nature. 2004;430:748–754. doi: 10.1038/nature02732. [DOI] [PubMed] [Google Scholar]
  • [14].Van Der Stelt M., Di Marzo V. Endovanilloids, putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem. 2004;271:1827–1834. doi: 10.1111/j.1432-1033.2004.04081.x. [DOI] [PubMed] [Google Scholar]
  • [15].Niiyama Y., Kawamata T., Yamamoto J., Omote K., Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinic subpopulations of dorsal roof ganglion neurons. Neuroscience. 2007;148:560–572. doi: 10.1016/j.neuroscience.2007.05.049. [DOI] [PubMed] [Google Scholar]
  • [16].El Kouhen R., Surowy C.S., Bianchi B.R., Neelands T.R., McDonald H.A., Niforatos W., et al. A-425619 [1-Isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J Pharmacol Exp Ther. 2005;314:400–409. doi: 10.1124/jpet.105.084103. [DOI] [PubMed] [Google Scholar]
  • [17].Ohta T., Imagawa T., Ito S. Novel agonistic action of mustard oil on recombinant and endogenous porcine transient receptor potential V1 (pTRPV1) channels. Biochem Pharmacol. 2007;73:1646–1656. doi: 10.1016/j.bcp.2007.01.029. [DOI] [PubMed] [Google Scholar]
  • [18].Hogg R.C. Novel approaches to pain relief using venom-derived peptides. Curr Med Chem. 2006;13:3191–3201. doi: 10.2174/092986706778742954. [DOI] [PubMed] [Google Scholar]
  • [19].Ravnefjord A., Brusberg M., Kang D., Bauer U., Larsson H., Lindström E., et al. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol. 2009;611:85–91. doi: 10.1016/j.ejphar.2009.03.058. [DOI] [PubMed] [Google Scholar]
  • [20].Fujii Y., Ozaki N., Taguchi T., Mizumura K., Furukawa K., Sugiura Y., et al. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain. 2008;140:292–304. doi: 10.1016/j.pain.2008.08.013. [DOI] [PubMed] [Google Scholar]
  • [21].Eckert W.A., Julius D., Basbaum A.I. Differential contribution of TRPV1 to thermal responses and tissue injury-induced sensitization of dorsal horn neurons in laminae I and V in the mouse. Pain. 2006;126:184–197. doi: 10.1016/j.pain.2006.06.032. [DOI] [PubMed] [Google Scholar]
  • [22].Banik R.K., Brennan T.J. Trpv1 mediates spontaneous firing and heat sensitization of cutaneous primary afferents after plantar incision. Pain. 2009;141:41–51. doi: 10.1016/j.pain.2008.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Kanizsai P., Garami A., Solymár M., Szolcsányi J., Szelényi Z. Energetics of fasting heterothermia in TRPV1-KO and wild type mice. Physiol Behav. 2009;96:149–154. doi: 10.1016/j.physbeh.2008.09.023. [DOI] [PubMed] [Google Scholar]
  • [24].Leffler A., Mönter B., Koltzenburg M. The role of the capsaicin receptor TRPV1 and acid-sensing ion channels (ASICS) in proton sensitivity of subpopulations of primary nociceptive neurons in rats and mice. Neuroscience. 2006;139:699–709. doi: 10.1016/j.neuroscience.2005.12.020. [DOI] [PubMed] [Google Scholar]
  • [25].Gu Q.H., Lee L.Y. Characterization of acid signaling in rat vagal pulmonary sensory neurons. Am J Physiol Lung Cell Mol Physiol. 2006;291:58–65. doi: 10.1152/ajplung.00517.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Hu F., Sun W.W., Zhao X.T., Cui Z.J., Yang W.X. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem Biophys Res Commun. 2008;369:989–993. doi: 10.1016/j.bbrc.2008.02.155. [DOI] [PubMed] [Google Scholar]
  • [27].Dhaka A., Uzzell V., Dubin A.E., Mathur J., Petrus M., Bandell M., et al. TRPV1 is activated by both acidic and basic pH. J Neurosci. 2009;29(1):153–158. doi: 10.1523/JNEUROSCI.4901-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Firner M., greffrath W., Treede R.D. Phosphorylation of extracellular signal-related protein kinase is required for rapid facilitation of heatinduced currents in rat dorsal root ganglion neurons. Neuroscience. 2006;143:253–263. doi: 10.1016/j.neuroscience.2006.07.047. [DOI] [PubMed] [Google Scholar]
  • [29].Kawamata T., Ji W., Yamamoto J., Niiyama Y., Furuse S., Namiki A. Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience. 2008;154:1067–1076. doi: 10.1016/j.neuroscience.2008.04.010. [DOI] [PubMed] [Google Scholar]
  • [30].Zhang H., Cang C.L., Kawasaki Y., Liang L.L., Zhang Y.Q., Ji R.R. Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCδ: a novel pathway for heat hyperalgesia. J Neurosci. 2007;27(44):12067–12077. doi: 10.1523/JNEUROSCI.0496-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Barton N.J., McQueen D.S., Thomson D., Gauldie S.D., Wilson A.W., Salter D.M., et al. Attenuation of experimental arthritis in TRPV1R knockout mice. Exp Mol Pathol. 2006;81:166–170. doi: 10.1016/j.yexmp.2006.04.007. [DOI] [PubMed] [Google Scholar]
  • [32].Pei L., Lin C.Y., Dai J.P., Yin G.F. Facial pain induces the alteration of transient receptor potential vanilloid receptor 1 expression in rat trigeminal ganglion. Neurosci Bull. 2007;23(2):92–100. doi: 10.1007/s12264-007-0013-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Iwata K., Takahashi O., Tsuboi Y., Ochiai H., Hibiya J., Sasaki T., et al. Fos protein induction in the medullary dorsal horn and first segment of the spinal cord by tooth-pulp stimulation in cats. Pain. 1998;75:27–36. doi: 10.1016/S0304-3959(97)00201-7. [DOI] [PubMed] [Google Scholar]
  • [34].Nagae M., Hiraga T., Wakabayashi H., Wang L., Iwata K., Yoneda T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone. 2006;39:1107–1115. doi: 10.1016/j.bone.2006.04.033. [DOI] [PubMed] [Google Scholar]
  • [35].Ji R.R. Mitogen-activated protein kinases as potential targets for pain killers. Curr Opin Investig Drugs. 2004;5(1):71–75. [PubMed] [Google Scholar]
  • [36].Niiyama Y., Kawamata T., Yamamoto J., Omote K., Namiki A. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinic subpopulations of dorsal roof ganglion neurons. Neuroscience. 2007;148:560–572. doi: 10.1016/j.neuroscience.2007.05.049. [DOI] [PubMed] [Google Scholar]
  • [37].Chen Y., Sommer C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: Involvement of inflammatory mediators. J Neurosci Res. 2007;85:1478–1488. doi: 10.1002/jnr.21272. [DOI] [PubMed] [Google Scholar]
  • [38].Chen Y.P., Chen S.R., Pan H.L. Effect of morphine on deep dorsal horn projection neurons depends on spinal GABAergic and glycinergic tone: implications for reduced opioid effect in neuropathic pain. J Pharmacol Exp Ther. 2005;315:696–703. doi: 10.1124/jpet.105.091314. [DOI] [PubMed] [Google Scholar]
  • [39].Chen S.R., Prunean A., Pan H.M., Welker K.L., Pan H.L. Resistance to morphine analgesis tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience. 2007;145:676–685. doi: 10.1016/j.neuroscience.2006.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Watanabe H., Murakami M., Ohba T., Ono K., Ito H. The pathological role of transient receptor potential channels in heart disease. Circ J. 2009;73:419–427. doi: 10.1253/circj.CJ-08-1153. [DOI] [PubMed] [Google Scholar]
  • [41].Christianson J.A., Mcilwrach S.L., Koerber H.R., Davis B.M. Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents. Neuroscience. 2006;140:247–257. doi: 10.1016/j.neuroscience.2006.02.015. [DOI] [PubMed] [Google Scholar]
  • [42].Auzanneau C., Norez C., Antigny F., Thoreau V., Jougla C., Cantereau A., et al. Transient receptor potential vanilloid 1 (TRPV1) channels in cultured rat Sertoli cells regulate an acid sensing chloride channel. Biochem Pharmacol. 2008;75:476–483. doi: 10.1016/j.bcp.2007.09.004. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES