Abstract
Objective
This report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.
Methods
The protein level of Aβ42 in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.
Results
Significant decrease of Aβ42 was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.
Conclusion
Oxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Aβ42. Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.
Keywords: presenilins, Alzheimer’s disease, oxidative damage, 8-OHdG
摘要
目的
观察3, 6, 9, 12月龄presenilin1和presenilin2双敲除小鼠(dKO)脑组织氧化损伤情况,探讨氧化损伤与presenilins功能丧失所引起的阿尔茨海默病样症状之间的关系。
方法
酶联免疫反应(ELISA)检测dKO小鼠大脑皮层中Aβ42水平和尿液中8-羟基脱氧鸟苷(8-hydroxy-2-deoxyguanosine, 8-OHdG)水平; 硫代巴比妥酸法检测脂质过氧化水平, 分光光度计测定DNPH法检测蛋白质损伤水平; 试剂盒法检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性。
结果
与对照组相比, dKO小鼠大脑皮层中Aβ42水平显著降低。 同时, 除了在3月龄dKO小鼠大脑皮层中发现脂质过氧化水平有显著增加外, 蛋白质损伤在各年龄段dKO小鼠中均没有明显变化。 ELISA检测结果显示尿液中游离的8-OHdG水平在各年龄段的dKO小鼠中均显著降低。 SOD和GSH-PX活性均无明显变化, 只有9月龄dKO小鼠中的GSH-PX活性有显著增高。
结论
氧化损伤特别是DNA损伤参与dKO小鼠神经退行性症状的发生过程; 由于dKO小鼠大脑皮层中没有Aβ42的沉积, 推测造成氧化损伤的原因可能是由活化的小胶质细胞和星形胶质细胞所释放的免疫因子介导的。
关键词: 早老素基因, 阿尔茨海默病, 氧化损伤, 8-OHdG
References
- [1].Goedert M., Spillantini M.G. A century of Alzheimer’s disease. Science. 2006;314(5800):777–781. doi: 10.1126/science.1132814. [DOI] [PubMed] [Google Scholar]
- [2].Feng R., Wang H., Wang J., Shrom D., Zeng X., Tsien J.Z. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2. Proc Nat1 Acad Sci USA. 2004;101(21):8162–8167. doi: 10.1073/pnas.0402733101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Saura C.A., Choi S.Y., Beglopoulos V., Malkani S., Zhang D., Shankaranarayana Rao B.S., et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42(1):23–36. doi: 10.1016/S0896-6273(04)00182-5. [DOI] [PubMed] [Google Scholar]
- [4].Tanzi R.E., Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545–555. doi: 10.1016/j.cell.2005.02.008. [DOI] [PubMed] [Google Scholar]
- [5].Czech C., Tremp G., Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog Neurobiol. 2000;60(4):363–384. doi: 10.1016/S0301-0082(99)00033-7. [DOI] [PubMed] [Google Scholar]
- [6].Selkoe D.J., Wolfe M.S. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–221. doi: 10.1016/j.cell.2007.10.012. [DOI] [PubMed] [Google Scholar]
- [7].Haass C. Presenilins: Genes for life and death. Neuron. 1997;18(5):687–690. doi: 10.1016/S0896-6273(00)80309-8. [DOI] [PubMed] [Google Scholar]
- [8].Shen J., Bronson R.T., Chen D.F., Xia W., Selkoe D.J., Tonegawa S. Skeletal and CNS defects in presenilin-1-deficient mice. Cell. 1997;89(4):629–639. doi: 10.1016/S0092-8674(00)80244-5. [DOI] [PubMed] [Google Scholar]
- [9].Feng R., Rampon C., Tang Y.P., Shrom D., Jin J., Kyin M., et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001;32(5):911–926. doi: 10.1016/S0896-6273(01)00523-2. [DOI] [PubMed] [Google Scholar]
- [10].Donoviel D.B., Hadjantonakis A.K., Ikeda M., Zheng H., Hyslop P.S., Bernstein A. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 1999;13(21):2801–2810. doi: 10.1101/gad.13.21.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Steiner H., Duff K., Capell A., Romig H., Grim M.G., Lincoln S., et al. A loss of function mutation of presenilin-2 interferes with Amyloid β-peptide production and Notch signaling. J Biol Chem. 1999;274(40):28669–28673. doi: 10.1074/jbc.274.40.28669. [DOI] [PubMed] [Google Scholar]
- [12].Beglopoulos V., Sun X., Saura C.A., Lemere C.A., Kim R.D., Shen J. Reduced β-Amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J Biol Chem. 2004;279(45):46907–46914. doi: 10.1074/jbc.M409544200. [DOI] [PubMed] [Google Scholar]
- [13].Chauhan V., Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology. 2006;13(3):195–208. doi: 10.1016/j.pathophys.2006.05.004. [DOI] [PubMed] [Google Scholar]
- [14].Butterfield D.A., Perluigi M., Sultana R. Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50. doi: 10.1016/j.ejphar.2006.06.026. [DOI] [PubMed] [Google Scholar]
- [15].Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;23(2):125–130. doi: 10.1007/s12264-007-0018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Tuppo E.E., Forman L.J. Free radical oxidative damage and Alzheimer’s disease. J Am Osteopath Assoc. 2001;101(12SupplPt1):11–15. [PubMed] [Google Scholar]
- [17].Guidi I., Galimberti D., Lonati S., Novembrinoc C., Bamonti F., Tiriticco M., et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2006;27(2):262–269. doi: 10.1016/j.neurobiolaging.2005.01.001. [DOI] [PubMed] [Google Scholar]
- [18].Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23(1):134–147. doi: 10.1016/S0891-5849(96)00629-6. [DOI] [PubMed] [Google Scholar]
- [19].Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29(12):609–615. doi: 10.1016/j.tips.2008.09.001. [DOI] [PubMed] [Google Scholar]
- [20].Butterfield D.A., Drake J., Pocernich C., Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med. 2001;7(12):548–554. doi: 10.1016/S1471-4914(01)02173-6. [DOI] [PubMed] [Google Scholar]
- [21].Smith M.A., Rottkamp C.A., Nunomura A., Raina A.K., Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502(1):139–144. doi: 10.1016/s0925-4439(00)00040-5. [DOI] [PubMed] [Google Scholar]
- [22].Gu F., Zhu M.J., Shi J.T., Hu Y.H., Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008;440(1):44–48. doi: 10.1016/j.neulet.2008.05.050. [DOI] [PubMed] [Google Scholar]
- [23].Zhu M.J., Gu F., Shi J.T., Hu J.F., Hu Y.H., Zhao Z. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Radic Biol Med. 2008;45(10):1493–1499. doi: 10.1016/j.freeradbiomed.2008.08.027. [DOI] [PubMed] [Google Scholar]
- [24].Labieniec M., Gabryelak T. Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols. Toxicol Lett. 2005;155(1):15–25. doi: 10.1016/j.toxlet.2004.06.008. [DOI] [PubMed] [Google Scholar]
- [25].Markesbery W.R., Lovell M.A. DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal. 2006;8(11–12):2039–2045. doi: 10.1089/ars.2006.8.2039. [DOI] [PubMed] [Google Scholar]
- [26].Yu H.K., Saura C.A., Choi S.Y., Sun L.D., Yang X.D., Handler M., et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001;31(5):713–726. doi: 10.1016/S0896-6273(01)00417-2. [DOI] [PubMed] [Google Scholar]
- [27].Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2. [DOI] [PubMed] [Google Scholar]
- [28].Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38. doi: 10.1016/S0009-8981(03)00003-2. [DOI] [PubMed] [Google Scholar]
- [29].Dalle-Donne I., Giustarini D., Colombo R., Rossi R., Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–176. doi: 10.1016/S1471-4914(03)00031-5. [DOI] [PubMed] [Google Scholar]
- [30].Markesbery W.R., Carney J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999;9(1):133–146. doi: 10.1111/j.1750-3639.1999.tb00215.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Casado, Encarnación Lopez-Fernández M., Concepción Casado M., de la Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2007;33(3):450–458. doi: 10.1007/s11064-007-9453-3. [DOI] [PubMed] [Google Scholar]
- [32].Zhu X., Su B., Wang X., Smith M.A., Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci. 2007;64(17):2202–2210. doi: 10.1007/s00018-007-7218-4. [DOI] [PMC free article] [PubMed] [Google Scholar]