Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Jul 7;25(3):131–137. doi: 10.1007/s12264-009-0114-1

Oxidative damage increased in presenilin1/presenilin2 conditional double knockout mice

Presenilin1/Presenilin2双基因敲除小鼠中氧化损伤增加

Dong-Li Zhang 1, Yi-Qun Chen 1, Xu Jiang 1, Ting-Ting Ji 1, Bing Mei 1,
PMCID: PMC5552561  PMID: 19448687

Abstract

Objective

This report aims to describe the oxidative damage profile in brain of presenilin1 and presenilin2 conditional double knockout mice (dKO) at both early and late age stages, and to discuss the correlation between oxidative stress and the Alzheimer-like phenotypes of dKO mice.

Methods

The protein level of Aβ42 in dKO cortex and free 8-OHdG level in urine were measured by ELISA. Thiobarbituric acid method and spectrophotometric DNPH assay were used to determine the lipid peroxidation and protein oxidation in cortex, respectively. SOD and GSH-PX activities were assessed by SOD Assay Kit-WST and GSH-PX assay kit, separately.

Results

Significant decrease of Aβ42 was verified in dKO cortex at 6 months as compared to control mice. Although lipid peroxidation (assessed by MDA) was increased only in dKO cortex at 3 months and protein oxidation (assessed by carbonyl groups) was basically unchanged in dKO cortex, ELISA analysis revealed that free 8-OHdG, which was an indicator of DNA lesion, was significantly decreased in urine of dKO mice from 3 months to 12 months. Activities of SOD and GSH-PX in dKO and control cortices showed no statistical difference except a significant increase of GSH-PX activity in dKO mice at 9 months.

Conclusion

Oxidative damage, especially DNA lesion, was correlated with the neurodegenerative symptoms that appeared in dKO mice without the deposition of Aβ42. Triggers of oxidative damage could be the inflammatory mediators released by activated microglia and astrocytes.

Keywords: presenilins, Alzheimer’s disease, oxidative damage, 8-OHdG

References

  • [1].Goedert M., Spillantini M.G. A century of Alzheimer’s disease. Science. 2006;314(5800):777–781. doi: 10.1126/science.1132814. [DOI] [PubMed] [Google Scholar]
  • [2].Feng R., Wang H., Wang J., Shrom D., Zeng X., Tsien J.Z. Forebrain degeneration and ventricle enlargement caused by double knockout of Alzheimer’s presenilin-1 and presenilin-2. Proc Nat1 Acad Sci USA. 2004;101(21):8162–8167. doi: 10.1073/pnas.0402733101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Saura C.A., Choi S.Y., Beglopoulos V., Malkani S., Zhang D., Shankaranarayana Rao B.S., et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron. 2004;42(1):23–36. doi: 10.1016/S0896-6273(04)00182-5. [DOI] [PubMed] [Google Scholar]
  • [4].Tanzi R.E., Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545–555. doi: 10.1016/j.cell.2005.02.008. [DOI] [PubMed] [Google Scholar]
  • [5].Czech C., Tremp G., Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog Neurobiol. 2000;60(4):363–384. doi: 10.1016/S0301-0082(99)00033-7. [DOI] [PubMed] [Google Scholar]
  • [6].Selkoe D.J., Wolfe M.S. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–221. doi: 10.1016/j.cell.2007.10.012. [DOI] [PubMed] [Google Scholar]
  • [7].Haass C. Presenilins: Genes for life and death. Neuron. 1997;18(5):687–690. doi: 10.1016/S0896-6273(00)80309-8. [DOI] [PubMed] [Google Scholar]
  • [8].Shen J., Bronson R.T., Chen D.F., Xia W., Selkoe D.J., Tonegawa S. Skeletal and CNS defects in presenilin-1-deficient mice. Cell. 1997;89(4):629–639. doi: 10.1016/S0092-8674(00)80244-5. [DOI] [PubMed] [Google Scholar]
  • [9].Feng R., Rampon C., Tang Y.P., Shrom D., Jin J., Kyin M., et al. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001;32(5):911–926. doi: 10.1016/S0896-6273(01)00523-2. [DOI] [PubMed] [Google Scholar]
  • [10].Donoviel D.B., Hadjantonakis A.K., Ikeda M., Zheng H., Hyslop P.S., Bernstein A. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 1999;13(21):2801–2810. doi: 10.1101/gad.13.21.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Steiner H., Duff K., Capell A., Romig H., Grim M.G., Lincoln S., et al. A loss of function mutation of presenilin-2 interferes with Amyloid β-peptide production and Notch signaling. J Biol Chem. 1999;274(40):28669–28673. doi: 10.1074/jbc.274.40.28669. [DOI] [PubMed] [Google Scholar]
  • [12].Beglopoulos V., Sun X., Saura C.A., Lemere C.A., Kim R.D., Shen J. Reduced β-Amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J Biol Chem. 2004;279(45):46907–46914. doi: 10.1074/jbc.M409544200. [DOI] [PubMed] [Google Scholar]
  • [13].Chauhan V., Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology. 2006;13(3):195–208. doi: 10.1016/j.pathophys.2006.05.004. [DOI] [PubMed] [Google Scholar]
  • [14].Butterfield D.A., Perluigi M., Sultana R. Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50. doi: 10.1016/j.ejphar.2006.06.026. [DOI] [PubMed] [Google Scholar]
  • [15].Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;23(2):125–130. doi: 10.1007/s12264-007-0018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Tuppo E.E., Forman L.J. Free radical oxidative damage and Alzheimer’s disease. J Am Osteopath Assoc. 2001;101(12SupplPt1):11–15. [PubMed] [Google Scholar]
  • [17].Guidi I., Galimberti D., Lonati S., Novembrinoc C., Bamonti F., Tiriticco M., et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2006;27(2):262–269. doi: 10.1016/j.neurobiolaging.2005.01.001. [DOI] [PubMed] [Google Scholar]
  • [18].Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23(1):134–147. doi: 10.1016/S0891-5849(96)00629-6. [DOI] [PubMed] [Google Scholar]
  • [19].Praticò D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci. 2008;29(12):609–615. doi: 10.1016/j.tips.2008.09.001. [DOI] [PubMed] [Google Scholar]
  • [20].Butterfield D.A., Drake J., Pocernich C., Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med. 2001;7(12):548–554. doi: 10.1016/S1471-4914(01)02173-6. [DOI] [PubMed] [Google Scholar]
  • [21].Smith M.A., Rottkamp C.A., Nunomura A., Raina A.K., Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502(1):139–144. doi: 10.1016/s0925-4439(00)00040-5. [DOI] [PubMed] [Google Scholar]
  • [22].Gu F., Zhu M.J., Shi J.T., Hu Y.H., Zhao Z. Enhanced oxidative stress is an early event during development of Alzheimer-like pathologies in presenilin conditional knock-out mice. Neurosci Lett. 2008;440(1):44–48. doi: 10.1016/j.neulet.2008.05.050. [DOI] [PubMed] [Google Scholar]
  • [23].Zhu M.J., Gu F., Shi J.T., Hu J.F., Hu Y.H., Zhao Z. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Radic Biol Med. 2008;45(10):1493–1499. doi: 10.1016/j.freeradbiomed.2008.08.027. [DOI] [PubMed] [Google Scholar]
  • [24].Labieniec M., Gabryelak T. Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols. Toxicol Lett. 2005;155(1):15–25. doi: 10.1016/j.toxlet.2004.06.008. [DOI] [PubMed] [Google Scholar]
  • [25].Markesbery W.R., Lovell M.A. DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal. 2006;8(11–12):2039–2045. doi: 10.1089/ars.2006.8.2039. [DOI] [PubMed] [Google Scholar]
  • [26].Yu H.K., Saura C.A., Choi S.Y., Sun L.D., Yang X.D., Handler M., et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron. 2001;31(5):713–726. doi: 10.1016/S0896-6273(01)00417-2. [DOI] [PubMed] [Google Scholar]
  • [27].Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9(6):515–540. doi: 10.1016/0891-5849(90)90131-2. [DOI] [PubMed] [Google Scholar]
  • [28].Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38. doi: 10.1016/S0009-8981(03)00003-2. [DOI] [PubMed] [Google Scholar]
  • [29].Dalle-Donne I., Giustarini D., Colombo R., Rossi R., Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9(4):169–176. doi: 10.1016/S1471-4914(03)00031-5. [DOI] [PubMed] [Google Scholar]
  • [30].Markesbery W.R., Carney J.M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 1999;9(1):133–146. doi: 10.1111/j.1750-3639.1999.tb00215.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Casado, Encarnación Lopez-Fernández M., Concepción Casado M., de la Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2007;33(3):450–458. doi: 10.1007/s11064-007-9453-3. [DOI] [PubMed] [Google Scholar]
  • [32].Zhu X., Su B., Wang X., Smith M.A., Perry G. Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci. 2007;64(17):2202–2210. doi: 10.1007/s00018-007-7218-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES