Abstract
Objective
The present study was aimed to investigate the pharmacological modulatory effects of ropivacaine, an amide-type local anesthetic, on rat Nav1.2 (rNav1.2) and rNav1.5, the two Na+ channel isoforms heterologously expressed in Xenopus oocytes and in HEK293t cell line, respectively.
Methods
Two-electrode voltage-clamp (TEVC) and whole-cell patchclamp recordings were employed to record the whole-cell currents.
Results
Ropivacaine induced tonic inhibition of peak Na+ currents of both subtypes in a dose- and frequency-dependent manner. rNav1.5 appeared to be more sensitive to ropivacaine. In addition, for both Na+ channel subtypes, the steady-state inactivation curves, but not the activation curves, were significantly shifted to the hyperpolarizing direction by ropivacaine. Use-dependent blockade of both rNav1.2 and rNav1.5 channels was induced by ropivacaine through a high frequency of depolarization, suggesting that ropivacaine could preferentially bind to the 2 inactivated Na+ channel isoforms.
Conclusion
The results will be helpful in understanding the pharmacological modulation by ropivacaine on Nav1.2 subtype in the central nervous system, and on Nav1.5 subtype abundantly expressed in the heart.
Keywords: ropivacaine, local anesthetic drug, Na+ channel subtype-sensitivity, electrophysiological recording
摘要
目的
本研究旨在探讨酰胺类局部麻醉药罗哌卡因对外源表达的大鼠脑型(rNav1.2)和心肌型(rNav1.5)电压门控 钠通道电流的药理调制作用。
方法
运用双电极和膜片钳全细胞记录技术记录全细胞电流。
结果
罗哌卡因能以浓 度和频率依赖的方式抑制rNav1.2和rNav1.5亚型通道的峰钠电流, 其中Nav1.5亚型通道对罗哌卡因的敏感性相对较 高。 此外, 罗哌卡因能使rNav1.2 和rNav1.5 亚型通道的稳态失活曲线向超极化方向显著偏移, 但对激活曲线没有 影响。 通过重复高频去极化刺激, 罗哌卡因能以使用依赖性的方式抑制rNav1.2 和rNav1.5 亚型通道的电流。
结论
结果提示罗哌卡因的药理机制体现在对钠通道亚型失活态的调制上。 该结果有助于进一步理解罗哌卡因对脑型和心 肌型电压门控钠通道的药理调制作用。
关键词: 罗哌卡因, 局部麻醉药, 电压门控钠通道亚型的敏感性, 电生理记录
Footnotes
These authors contributed equally to this work.
Contributor Information
Yong-Hua Ji, Email: yhji@staff.shu.edu.cn.
Hong-Yan Zhu, Phone: +86-21-66135189, FAX: +86-21-66135189, Email: zhyred@shu.edu.cn.
References
- [1].Brockway M.S., Bannister J., McClure J.H., McKeown D., Wildsmith J.A. Comparison of extradural ropivacaine and bupivacaine. Br J Anaesth. 1991;66(1):31–37. doi: 10.1093/bja/66.1.31. [DOI] [PubMed] [Google Scholar]
- [2].Zaric D., Axelsson K., Philipson L., Nydahl P.A., Larsson P., Jansson J.R., et al. Blockade of the abdominal muscles measured by EMG during lumbar epidural analgesia with ropivacaine-a double-blind study. Acta Anaesthesiol Scand. 1993;37(3):274–280. doi: 10.1111/j.1399-6576.1993.tb03715.x. [DOI] [PubMed] [Google Scholar]
- [3].Kopacz D.J., Emanuelsson B.M., Thompson G.E., Carpenter R.L., Stephenson C.A. Pharmacokinetics of ropivacaine and bupivacaine for bilateral intercostal blockade in healthy male volunteers. Anesthesiology. 1994;81(5):1139–1148. doi: 10.1097/00000542-199411000-00007. [DOI] [PubMed] [Google Scholar]
- [4].Guo X.T., Castle N.A., Chernoff D.M., Strichartz G.R. Comparative inhibition of voltage-gated cation channels by local anesthetics. Ann N Y Acad Sci. 1991;625:181–199. doi: 10.1111/j.1749-6632.1991.tb33841.x. [DOI] [PubMed] [Google Scholar]
- [5].Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br J Anaesth. 2002;89(1):52–61. doi: 10.1093/bja/aef163. [DOI] [PubMed] [Google Scholar]
- [6].Delgado J.N., Remers W.A. Textbook of Organic Medicinal and Pharmaceutical Chemistry. Philadelphia: Lippincott-Raven Publishers, New York; 1998. pp. 631–655. [Google Scholar]
- [7].Courtney K.R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975;195(2):225–236. [PubMed] [Google Scholar]
- [8].Yu F.H., Westenbroek R.E., Silos-Santiago I., McCormick K.A., Lawson D., Ge P., et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 2003;23(20):7577–7585. doi: 10.1523/JNEUROSCI.23-20-07577.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Goldin A.L., Barchi R.L., Caldwell J.H., Hofmann F., Howe J.R., Hunter J.C., et al. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28(2):365–368. doi: 10.1016/S0896-6273(00)00116-1. [DOI] [PubMed] [Google Scholar]
- [10].Goldin A.L. Evolution of voltage-gated Na+ channels. J Exp Biol. 2002;205(Pt5):575–584. doi: 10.1242/jeb.205.5.575. [DOI] [PubMed] [Google Scholar]
- [11].Gong B., Rhodes K.J., Bekele-Arcuri Z., Trimmer J.S. Type I and type II Na+ channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol. 1999;412(2):342–352. doi: 10.1002/(SICI)1096-9861(19990920)412:2<342::AID-CNE11>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
- [12].Kallen R.G., Sheng Z.H., Yang J., Chen L.Q., Rogart R.B., Barchi R.L. Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron. 1990;4(2):233–242. doi: 10.1016/0896-6273(90)90098-Z. [DOI] [PubMed] [Google Scholar]
- [13].Oda A., Ohashi H., Komori S., Iida H., Dohi S. Characteristics of ropivacaine block of Na+ channels in rat dorsal root ganglion neurons. Anesth Analg. 2000;91(5):1213–1220. doi: 10.1097/00000539-200011000-00031. [DOI] [PubMed] [Google Scholar]
- [14].Ding H.L., Zeng Y.M., Li X.D., Jiang W.P., Duan S.M. Effects of ropivacaine on sodium, calcium, and potassium currents in guinea pig ventricular myocytes. Acta Pharmacol Sin. 2002;23(1):50–54. [PubMed] [Google Scholar]
- [15].Weiser T. Comparison of the effects of four Na+ channel analgesics on TTX-resistant Na+ currents in rat sensory neurons and recombinant Nav1.2 channels. Neurosci Lett. 2006;395(3):. 179–184. doi: 10.1016/j.neulet.2005.10.058. [DOI] [PubMed] [Google Scholar]
- [16].Ulbricht W. Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol Rev. 1981;61(4):785–828. doi: 10.1152/physrev.1981.61.4.785. [DOI] [PubMed] [Google Scholar]