Abstract
It is believed that amyloid-β peptide (Aβ) plays a central role in the pathogenesis of Alzheimer’s disease (AD). Thus, the process of amyloid precursor protein (APP) cleavage is a key event and has raised much attention in the field of AD research. It is proposed that APP, β- and γ-secretases are all located on the lipid raft, and the meeting of them is an indispensable step for Aβ generation. Endocytosis can lead to clustering of APP, β- and γ-secretases from separate smaller lipid rafts into a larger one. On the other hand, for myristoylated alanine-rich C kinase substrate (MARCKS), phosphorylation by protein kinase C (PKC) or interaction with Ca2+ can lead to its release from membrane into cytoplasm. This process induces the release of actins and phosphatidylinositol 4, 5-bisphosphate (PIP2), which are important factors for endocytosis. Thus, the present review proposes that MARCKS may be implicated in Aβ generation, by modulating free PIP2 level and actin movement, causing endocytosis.
Keywords: Alzheimer’s disease; endocytosis; myristoylated alanine-rich C kinase substrate; lipid raft; phosphatidylinositol 4, 5-bisphosphate; actin cytoskeleton
摘要
β淀粉样蛋白(amyloid β, Aβ)在阿尔茨海默病(Alzheimer’s disease, AD)的发病过程中的重要作用已为人熟知。 淀粉样前体蛋白(amyloid precursor protein, APP)的水解过程也因此成为AD研究的重点。 APP、 β-和γ-分泌酶都位 于脂筏上, 三者的相遇是产生Aβ 的必要步骤, 而胞吞作用则能使分布在微小脂筏上的APP、 β-和γ-分泌酶集中 到较大的脂筏上。 另一方面, 豆蔻酰化的富丙氨酸的蛋白激酶C的底物(myristoylated alanine-rich C kinase substrate, MARCKS)被蛋白激酶C磷酸化或与钙离子作用后, 会离开细胞膜进入细胞质, 进而引起在胞吞作用中起重要作用 的肌动蛋白和4, 5-二磷酸肌醇(PIP2)的释放。 因此, 本文提出假说, 认为MARCKS通过调节自由态PIP2 的水平和 肌动蛋白的运动, 引发胞吞作用, 进而在Aβ 的产生过程中起重要作用。
关键词: 阿尔茨海默病; 胞吞; 豆蔻酰化的富丙氨酸的蛋白激酶C 的底物; 脂筏; 4, 5-二磷酸肌醇; 肌动蛋白 细胞骨架
References
- [1].Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–639. doi: 10.1038/nature02621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Tanzi R.E., Moir R.D., Wagner S.L. Clearance of Alzheimer’s Abeta peptide: the many roads to perdition. Neuron. 2004;43:605–608. doi: 10.1016/j.neuron.2004.08.024. [DOI] [PubMed] [Google Scholar]
- [3].Poirier J., Apolipoprotein E. cholesterol transport and synthesis in sporadic Alzheimer’s disease. Neurobiol Aging. 2005;26:355–361. doi: 10.1016/j.neurobiolaging.2004.09.003. [DOI] [PubMed] [Google Scholar]
- [4].Lambert J.C., Amouyel P. Genetic heterogeneity of Alzheimer’s disease: Complexity and advances. Psychoneuroendocrinology. 2007;32:62–70. doi: 10.1016/j.psyneuen.2007.05.015. [DOI] [PubMed] [Google Scholar]
- [5].Ralph A.N., Paul M.M., Anne M.C. The neuronal endosomal-lysosomal system in Alzheimer’s disease. J Alzheimers Dis. 2001;3:97–107. doi: 10.3233/jad-2001-3114. [DOI] [PubMed] [Google Scholar]
- [6].Corder E.H., Saunders A.M., Strittmatter W.J., Schmechel D.E., Gaskell P.C., Small G.W., et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
- [7].Blennow K., de Leon M., Zetterberg H. Alzheimer’s disease. Lancet. 2007;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. [DOI] [PubMed] [Google Scholar]
- [8].Simons K., Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002;110:597–603. doi: 10.1172/JCI16390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Simons M., Keller P., Dichgans J., Schulz J.B. Cholesterol and Alzheimer’s disease: is there a link? Neurology. 2001;57:1089–1093. doi: 10.1212/wnl.57.6.1089. [DOI] [PubMed] [Google Scholar]
- [10].Wolozin B., Kellman W., Ruosseau P., Celesia G.G., Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methy-glutaryl coenzyme A reductase inhibitors. Arch Neurol. 2000;57:1439–1443. doi: 10.1001/archneur.57.10.1439. [DOI] [PubMed] [Google Scholar]
- [11].Cataldo A.M., Nixon R.A. Endocytic pathway abnormalities precede amyloid-beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol. 2000;157:277–286. doi: 10.1016/s0002-9440(10)64538-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Cataldo A.M., Barnett J.L., Pieroni C., Nixon R.A. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci. 1997;17:6142–6151. doi: 10.1523/JNEUROSCI.17-16-06142.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Cataldo A.M., Petanceska S., Terio N.B., Peterhoff C.M., Durham R., Mercken M., et al. Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging. 2004;25:1263–1272. doi: 10.1016/j.neurobiolaging.2004.02.027. [DOI] [PubMed] [Google Scholar]
- [14].Hardy J.A., Higgins G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. [DOI] [PubMed] [Google Scholar]
- [15].Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. [DOI] [PubMed] [Google Scholar]
- [16].Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
- [17].Marambaud P., Zhao H., Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem. 2005;280:37377–37382. doi: 10.1074/jbc.M508246200. [DOI] [PubMed] [Google Scholar]
- [18].Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–639. doi: 10.1038/nature02621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103:11172–11177. doi: 10.1073/pnas.0603838103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Osawa S., Funamoto S., Nobuhara M., Wada-Kakuda S., Shimojo M., Yagishita S., et al. Phosphoinositides suppress gamma-secretase in both the detergent-soluble and -insoluble states. J Biol Chem. 2008;283:19283–19292. doi: 10.1074/jbc.M705954200. [DOI] [PubMed] [Google Scholar]
- [21].Kojro E., Gimpl G., Lammich S., Marz W., Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci U S A. 2001;98:5815–5820. doi: 10.1073/pnas.081612998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Robert E., Patrick K., Christian H., Christoph T., Kai S. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003;160:113–122. doi: 10.1083/jcb.200207113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Smythe E., Ayscough K.R. Actin regulation in endocytosis. J Cell Sci. 2006;119:4589–4598. doi: 10.1242/jcs.03247. [DOI] [PubMed] [Google Scholar]
- [24].Clague M.J. Molecular aspects of the endocytic pathway. Biochem J. 1998;336:271–282. doi: 10.1042/bj3360271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Maxfield F.R., McGraw T.E. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5:121–132. doi: 10.1038/nrm1315. [DOI] [PubMed] [Google Scholar]
- [26].Mukherjee S., Ghosh R.N., Maxfield F.R. Endocytosis. Physiol Rev. 1997;77:759–803. doi: 10.1152/physrev.1997.77.3.759. [DOI] [PubMed] [Google Scholar]
- [27].Soldati T., Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Bio. 2006;l7:897–908. doi: 10.1038/nrm2060. [DOI] [PubMed] [Google Scholar]
- [28].Zhang M. Endocytic mechanisms and drug discovery in neurodegenerative diseases. Front Biosci. 2008;13:6086–6105. doi: 10.2741/3140. [DOI] [PubMed] [Google Scholar]
- [29].Golde T., Estus S., Younkin L., Selkoe D., Younkin S. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science. 1992;255:728–730. doi: 10.1126/science.1738847. [DOI] [PubMed] [Google Scholar]
- [30].Perez R.G., Soriano S., Hayes J.D., Beth O., Weiming X., Dennis J., et al. Mutagenesis identifies new signals for β-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Aβ42. J Biol Chem. 1999;274:18851–18856. doi: 10.1074/jbc.274.27.18851. [DOI] [PubMed] [Google Scholar]
- [31].Koo E.H., Squazzo S.L. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J Biol Chem. 1994;269:17386–17389. [PubMed] [Google Scholar]
- [32].Kai S., Robert E. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002;110:597–603. doi: 10.1172/JCI16390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Glaser M., Wanaski S., Buser C.A., Boguslavsky V., Rashidzada W., Morris A., et al. Myristoylated alanine-rich C kinase Substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem. 1996;271:26187–26193. doi: 10.1074/jbc.271.42.26187. [DOI] [PubMed] [Google Scholar]
- [34].Arbuzova A., Schmitz A.A., Vergeres G. Cross-talk unfolded: MARCKS proteins. Biochem J. 2002;362:1–12. doi: 10.1042/0264-6021:3620001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].McNamara R.K., Hussain R.J., Simon E.J., Stumpo D.J., Blackshear P.J., Abel T., et al. Effect of myristoylated alanine-rich C kinase substrate (MARCKS) overexpression on hippocampus-dependent learning and hippocampal synaptic plasticity in MARCKS transgenic mice. Hippocampus. 2005;15:675–683. doi: 10.1002/hipo.20089. [DOI] [PubMed] [Google Scholar]
- [36].Laux T., Fukami K., Thelen M., Golub T., Frey D., Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000;149:1455–1472. doi: 10.1083/jcb.149.7.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Rheenen J., Achame E.M., Janssen H., Calafat J., Jalink K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J. 2005;24:1664–1673. doi: 10.1038/sj.emboj.7600655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [38].Golub T., Caroni P. PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J Cell Biol. 2005;169:151–165. doi: 10.1083/jcb.200407058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Martin T. PI(4,5)P2 regulation of surface membrane traffic. Curr Opin Cell Biol. 2001;13:493–499. doi: 10.1016/S0955-0674(00)00241-6. [DOI] [PubMed] [Google Scholar]
- [40].Pico Caroni. Actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J. 2001;20:4332–4336. doi: 10.1093/emboj/20.16.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Cremona O., De Camilli P. Phosphoinositides in membrane traffic at the synapse. J Cell Sci. 2001;114:1041–1052. doi: 10.1242/jcs.114.6.1041. [DOI] [PubMed] [Google Scholar]
- [42].Botelho R.J., Dierckman R., Anderson R., Wells A., York J.D., Meyer T., et al. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol. 2000;151:1353–1368. doi: 10.1083/jcb.151.7.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Berman D.E., Dall A.C., Voronov S.V., McIntire L.B., Zhang H., Moore A.Z., et al. Oligomeric amyloid-β peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci. 2008;11:547–554. doi: 10.1038/nn.2100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Landman N., Jeong S.Y., Shin S.Y., Voronov S.V., Serban G., Kang M.S., et al. Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci U S A. 2006;103:19524–19529. doi: 10.1073/pnas.0604954103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [45].Coburn R.F., Labelle E.F., Baron C.B. Polyamines, PI(4,5)P2, and actin polymerization. J Cell Physiol. 2006;209:405–412. doi: 10.1002/jcp.20729. [DOI] [PubMed] [Google Scholar]
- [46].Höning S., Ricotta D., Krauss M., Späte K., Spolaore B., Motley A., et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol Cell. 2005;18:519–531. doi: 10.1016/j.molcel.2005.04.019. [DOI] [PubMed] [Google Scholar]
- [47].Lamaze C., Fujimoto L.M., Yin H.L., Schmid S.L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J Biol Chem. 1997;272:20332–20335. doi: 10.1074/jbc.272.33.20332. [DOI] [PubMed] [Google Scholar]
- [48].Jack Taunton. Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr Opin Cell Biol. 2001;13:85–91. doi: 10.1016/S0955-0674(00)00178-2. [DOI] [PubMed] [Google Scholar]
- [49].Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell. 1992;71:713–716. doi: 10.1016/0092-8674(92)90546-O. [DOI] [PubMed] [Google Scholar]
- [50].Blackshear P.J. The MARCKS family of cellular protein kinase C substrates. J Biol Chem. 1993;268:1501–1504. [PubMed] [Google Scholar]
- [51].Sundaram M., Cook H.W., Byers D.M. The MARCKS family of phospholipid binding proteins: regulation of phospholipase D and other cellular components. Biochem Cell Biol. 2004;82:191–200. doi: 10.1139/o03-087. [DOI] [PubMed] [Google Scholar]
- [52].Hartwig J., Thelen M., Rosen A., Janmey P., Nairn A., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 1992;356:618–622. doi: 10.1038/356618a0. [DOI] [PubMed] [Google Scholar]