Abstract
Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.
Keywords: depression, animal models, learned helplessness, chronic mild stress, social defeat, forced swimming test, tail suspension test
摘要
抑郁症是一种慢性的、 具有高复发率的精神性疾病, 往往会危及到病人的生命。 尽맜其全球发病率高达 20%, 但人们对其病理生理机制了解甚少, 这主要归因于缺乏有效可靠的动物模型。 此外, 抑郁症的核心症状, 例如抑郁心境、 无价值感和反复出现自杀念头等, 均无法在实验动物上得以模拟。 目前, 大部分动物模型的建立 主要参照以下两个原则之一: 对于已知抗抑郁药的作用或者是对应激的反应。 本综述主要介绍目前最常用的几个 抑郁症动物模型, 包括获得性无助、 慢性温和应激和社会失败应激, 以及一些用于筛选有抗抑郁活性药物的行为 学检测方法(如强迫游泳实验和悬尾实验), 并对它们的优点与不足进行讨论。 最后, 对动物模型和行为学检测 方法的发展方向进行展望。
关键词: 抑郁症, 动物模型, 获得性无助, 慢性温和应激, 社会失败应激, 强迫游泳实验, 悬尾实验
References
- [1].Berton O., Nestler E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–151. doi: 10.1038/nrn1846. [DOI] [PubMed] [Google Scholar]
- [2].Nestler E.J., Barrot M., DiLeone R.J., Eisch A.J., Gold S.J., Monteggia L.M. Neurobiology of depression. Neuron. 2002;34:13–25. doi: 10.1016/S0896-6273(02)00653-0. [DOI] [PubMed] [Google Scholar]
- [3].Krishnan V., Nestler E.J. The molecular neurobiology of depression. Nature. 2008;455:894–902. doi: 10.1038/nature07455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Murray C.J., Lopez A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997;349:1498–1504. doi: 10.1016/S0140-6736(96)07492-2. [DOI] [PubMed] [Google Scholar]
- [5].Han D., Wang E.C. Remission from depression: a review of venlafaxine clinical and economic evidence. Pharmacoeconomics. 2005;23:567–581. doi: 10.2165/00019053-200523060-00004. [DOI] [PubMed] [Google Scholar]
- [6].Willner P., Mitchell P.J. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002;13:169–188. doi: 10.1097/00008877-200205000-00001. [DOI] [PubMed] [Google Scholar]
- [7].Anisman H., Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev. 2005;29:525–546. doi: 10.1016/j.neubiorev.2005.03.007. [DOI] [PubMed] [Google Scholar]
- [8].Vollmayr B., Mahlstedt M.M., Henn F.A. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci. 2007;257:300–303. doi: 10.1007/s00406-007-0734-2. [DOI] [PubMed] [Google Scholar]
- [9].Cryan J.F., Markou A., Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002;23:238–245. doi: 10.1016/S0165-6147(02)02017-5. [DOI] [PubMed] [Google Scholar]
- [10].Urani A., Chourbaji S., Gass P. Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev. 2005;29:805–828. doi: 10.1016/j.neubiorev.2005.03.020. [DOI] [PubMed] [Google Scholar]
- [11].Overmier J.B., Seligman M.E. Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol. 1967;63:28–33. doi: 10.1037/h0024166. [DOI] [PubMed] [Google Scholar]
- [12].Hitzemann R. Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol Res Health. 2000;24:149–158. [PMC free article] [PubMed] [Google Scholar]
- [13].Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984;83:1–16. doi: 10.1007/BF00427414. [DOI] [PubMed] [Google Scholar]
- [14].Seligman M.E., Maier S.F. Failure to escape traumatic shock. J Exp Psychol. 1967;74:1–9. doi: 10.1037/h0024514. [DOI] [PubMed] [Google Scholar]
- [15].O’Neil M.F., Moore N.A. Animal models of depression: are there any? Hum Psychopharmacol. 2003;18:239–254. doi: 10.1002/hup.496. [DOI] [PubMed] [Google Scholar]
- [16].Nestler E.J., Gould E., Manji H., Buncan M., Duman R.S., Greshenfeld H.K., et al. Preclinical models: status of basic research in depression. Biol Psychiatry. 2002;52:503–528. doi: 10.1016/S0006-3223(02)01405-1. [DOI] [PubMed] [Google Scholar]
- [17].Drugan R.C., Basile A.S., Ha J.H., Healy D., Ferland R.J. Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Brain Res Protoc. 1997;2:69–74. doi: 10.1016/S1385-299X(97)00031-7. [DOI] [PubMed] [Google Scholar]
- [18].Grahn R.E., Watkins L.R., Maier S.F. Impaired escape performance and enhanced conditioned fear in rats following exposure to an uncontrollable stressor are mediated by glutamate and nitric oxide in the dorsal raphe nucleus. Behav Brain Res. 2000;112:33–41. doi: 10.1016/S0166-4328(00)00161-3. [DOI] [PubMed] [Google Scholar]
- [19].Durgam RC. Rodent models of depression: learned helplessness using a triadic design in rats. Curr Protoc Neurosci 2001, Chapter 8: Unit 8 10B. [DOI] [PubMed]
- [20].Hajszan T., Dow A., Warner-Schmidt J.L., Szigeti-Buck K., Sallam N.L., Parducz A., et al. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry. 2009;65:392–400. doi: 10.1016/j.biopsych.2008.09.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Chourbaji S., Zacher C., Sanchis-Segura C., Dormann C., Vollmayr B., Gass P. Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc. 2005;16:70–78. doi: 10.1016/j.brainresprot.2005.09.002. [DOI] [PubMed] [Google Scholar]
- [22].Vollmayr B., Henn F.A. Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc. 2001;8:1–7. doi: 10.1016/S1385-299X(01)00067-8. [DOI] [PubMed] [Google Scholar]
- [23].Adrien J., Dugovic C., Martin P. Sleep-wakefulness patterns in the helpless rat. Physiol Behav. 1991;49:257–262. doi: 10.1016/0031-9384(91)90041-L. [DOI] [PubMed] [Google Scholar]
- [24].Dess N.K., Raizer J., Chapman C.D., Garcia J. Stressors in the learned helplessness paradigm: effects on body weight and conditioned taste aversion in rats. Physiol Behav. 1988;44:483–490. doi: 10.1016/0031-9384(88)90309-5. [DOI] [PubMed] [Google Scholar]
- [25].Greenberg L., Edwards E., Henn F.A. Dexamethasone suppression test in helpless rats. Biol Psychiatry. 1989;26:530–532. doi: 10.1016/0006-3223(89)90074-7. [DOI] [PubMed] [Google Scholar]
- [26].Henn F., Edwards E., Muneyyirci J. Animal models of depression. Clin Neurosci. 1993;1:152–156. [Google Scholar]
- [27].Vollmayr B., Bachteler D., Vengeliene V., Gass P., Spanagel R., Henn F. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res. 2004;150:217–221. doi: 10.1016/S0166-4328(03)00259-6. [DOI] [PubMed] [Google Scholar]
- [28].Sherman A.D., Sacquitne J.L., Petty F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav. 1982;16:449–454. doi: 10.1016/0091-3057(82)90451-8. [DOI] [PubMed] [Google Scholar]
- [29].McKinney W.T. Electroconvulsive therapy and animal models of depression. Ann N Y Acad Sci. 1986;462:65–69. doi: 10.1111/j.1749-6632.1986.tb51240.x. [DOI] [PubMed] [Google Scholar]
- [30].Vollmayr B., Henn F.A. Stress models of depression. Clin Neurosci Res. 2003;3:245–251. doi: 10.1016/S1566-2772(03)00086-0. [DOI] [Google Scholar]
- [31].Fadda P., Pani L., Porcella A., Fratta W. Chronic imipramine, L-sulpiride and mianserin decrease corticotropin releasing factor levels in the rat brain. Neurosci Lett. 1995;192:121–123. doi: 10.1016/0304-3940(95)11612-Z. [DOI] [PubMed] [Google Scholar]
- [32].Takamori K., Yoshida S., Okuyama S. Availability of learned helplessness test as a model of depression compared to a forced swimming test in rats. Pharmacology. 2001;63:147–153. doi: 10.1159/000056126. [DOI] [PubMed] [Google Scholar]
- [33].Ridder S., Chourbaji S., Hellweg R., Urani A., Zacher C., Schmid W., et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci. 2005;25:6243–6250. doi: 10.1523/JNEUROSCI.0736-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Mitchell P.J., Redfern P.H. Animal models of depressive illness: the importance of chronic drug treatment. Curr Pharm Des. 2005;11:171–203. doi: 10.2174/1381612053382250. [DOI] [PubMed] [Google Scholar]
- [35].Henn F.A., Vollmayr B. Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev. 2005;29:799–804. doi: 10.1016/j.neubiorev.2005.03.019. [DOI] [PubMed] [Google Scholar]
- [36].Anisman H, Merali Z. Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci 2001, Chapter 8: Unit 8 10C. [DOI] [PubMed]
- [37].Katz R.J., Roth K.A., Carroll B.J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev. 1981;5:247–251. doi: 10.1016/0149-7634(81)90005-1. [DOI] [PubMed] [Google Scholar]
- [38].Katz R.J., Roth K.A., Schmaltz K. Amphetamine and tranylcypromine in an animal model of depression: pharmacological specificity of the reversal effect. Neurosci Biobehav Rev. 1981;5:259–264. doi: 10.1016/0149-7634(81)90007-5. [DOI] [PubMed] [Google Scholar]
- [39].Willner P., Towell A., Sampson D., Sophokleous S., Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987;93:358–364. doi: 10.1007/BF00187257. [DOI] [PubMed] [Google Scholar]
- [40].Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997;134:319–329. doi: 10.1007/s002130050456. [DOI] [PubMed] [Google Scholar]
- [41].Katz R.J. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav. 1982;16:965–968. doi: 10.1016/0091-3057(82)90053-3. [DOI] [PubMed] [Google Scholar]
- [42].Katz R.J., Baldrighi G. A further parametric study of imipramine in an animal model of depression. Pharmacol Biochem Behav. 1982;16:969–972. doi: 10.1016/0091-3057(82)90054-5. [DOI] [PubMed] [Google Scholar]
- [43].Katz R.J. Animal model of depression: effects of electroconvulsive shock therapy. Neurosci Biobehav Rev. 1981;5:273–277. doi: 10.1016/0149-7634(81)90009-9. [DOI] [PubMed] [Google Scholar]
- [44].Willner P., Muscat R., Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–534. doi: 10.1016/S0149-7634(05)80194-0. [DOI] [PubMed] [Google Scholar]
- [45].Monleon S., D’Aquila P., Parra A., Simon V.M., Brain P.F., Willner P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl) 1995;117:453–457. doi: 10.1007/BF02246218. [DOI] [PubMed] [Google Scholar]
- [46].Pothion S., Bizot J.C., Trovero F., Belzung C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res. 2004;155:135–146. doi: 10.1016/j.bbr.2004.04.008. [DOI] [PubMed] [Google Scholar]
- [47].Stemmelin J., Cohen C., Yalcin I., Keane P., Griebel G. Implication of [beta]3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behav Brain Res. 2010;206:310–312. doi: 10.1016/j.bbr.2009.09.003. [DOI] [PubMed] [Google Scholar]
- [48].Zhu XH, Yan HC, Qu HD, Chen L, Li SJ, Cao X, et al. Antidepressant effects of intermittent hypoxia by promoting hippocampal neurogenesis in adult rats. Annual Meeting of the Society of Neuroscience 2009, Chicago.
- [49].Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90–110. doi: 10.1159/000087097. [DOI] [PubMed] [Google Scholar]
- [50].Brown G.W., Prudo R. Psychiatric disorder in a rural and an urban population: 1. Aetiology of depression. Psychol Med. 1981;11:581–599. doi: 10.1017/S0033291700052880. [DOI] [PubMed] [Google Scholar]
- [51].Yan H.C., Qu H.D., Sun L.R., Li S.J., Cao X., Fang Y.Y., et al. Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol. 2010;13:623–633. doi: 10.1017/S1461145709990733. [DOI] [PubMed] [Google Scholar]
- [52].Berton O., McClung C.A., Dileone R.J., Krishnan V., Renthal W., Russo S.J., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–868. doi: 10.1126/science.1120972. [DOI] [PubMed] [Google Scholar]
- [53].Krishnan V., Han M.H., Graham D.L., Berton O., Renthal W., Russo S.J., et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131:391–404. doi: 10.1016/j.cell.2007.09.018. [DOI] [PubMed] [Google Scholar]
- [54].Tsankova N.M., Berton O., Renthal W., Kumar A., Neve R.L., Nestler E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–525. doi: 10.1038/nn1659. [DOI] [PubMed] [Google Scholar]
- [55].Buwalda B., Kole M.H., Veenema A.H., Huininga M., de Boer S.F., Korte S.M., et al. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev. 2005;29:83–97. doi: 10.1016/j.neubiorev.2004.05.005. [DOI] [PubMed] [Google Scholar]
- [56].Von Frijtag J.C., Reijmers L.G., Van der Harst J.E., Leus I.E., Van den Bos R., Spruijt B.M. Defeat followed by individual housing results in long-term impaired reward- and cognition-related behaviours in rats. Behav Brain Res. 2000;117:137–146. doi: 10.1016/S0166-4328(00)00300-4. [DOI] [PubMed] [Google Scholar]
- [57].Meerlo P., Overkamp G.J., Benning M.A., Koolhaas J.M., Van den Hoofdakker R.H. Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol Behav. 1996;60:115–119. doi: 10.1016/0031-9384(95)02271-6. [DOI] [PubMed] [Google Scholar]
- [58].Fuchs E., Kramer M., Hermes B., Netter P., Hiemke C. Psychosocial stress in tree shrews: clomipramine counteracts behavioral and endocrine changes. Pharmacol Biochem Behav. 1996;54:219–228. doi: 10.1016/0091-3057(95)02166-3. [DOI] [PubMed] [Google Scholar]
- [59].Cryan J.F., Slattery D.A. Animal models of mood disorders: Recent developments. Curr Opin Psychiatry. 2007;20:1–7. doi: 10.1097/YCO.0b013e3280117733. [DOI] [PubMed] [Google Scholar]
- [60].Kalueff A.V., Avgustinovich D.F., Kudryavtseva N.N., Murphy D.L. BDNF in anxiety and depression. Science. 2006;312:1598–1599. doi: 10.1126/science.312.5780.1598. [DOI] [PubMed] [Google Scholar]
- [61].Kudryavtseva N.N., Bakshtanovskaya I.V., Koryakina L.A. Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav. 1991;38:315–320. doi: 10.1016/0091-3057(91)90284-9. [DOI] [PubMed] [Google Scholar]
- [62].Bjorkqvist K. Social defeat as a stressor in humans. Physiol Behav. 2001;73:435–442. doi: 10.1016/S0031-9384(01)00490-5. [DOI] [PubMed] [Google Scholar]
- [63].Holmes A., Yang R.J., Murphy D.L., Crawley J.N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology. 2002;27:914–923. doi: 10.1016/S0893-133X(02)00374-3. [DOI] [PubMed] [Google Scholar]
- [64].Mayorga A.J., Dalvi A., Page M.E., Zimov-Levinson S., Hen R., Lucki I. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther. 2001;298:1101–1107. [PubMed] [Google Scholar]
- [65].Schramm N.L., McDonald M.P., Limbird L.E. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci. 2001;21:4875–4882. doi: 10.1523/JNEUROSCI.21-13-04875.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [66].Pliakas A.M., Carlson R.R., Neve R.L., Konradi C., Nestler E.J., Carlezon W.A., Jr Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci. 2001;21:7397–7403. doi: 10.1523/JNEUROSCI.21-18-07397.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci 2009, Chapter 9: Unit 9 32. [DOI] [PMC free article] [PubMed]
- [68].Gourley S.L., Wu F.J., Kiraly D.D., Ploski J.E., Kedves A.T., Duman R.S., et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry. 2008;63:353–359. doi: 10.1016/j.biopsych.2007.07.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [69].Gourley S.L., Kiraly D.D., Howell J.L., Olausson P., Taylor J.R. Acute Hippocampal Brain-Derived Neurotrophic Factor Restores Motivational and Forced Swim Performance After Corticosterone. Biological Psychiatry. 2008;64:884–890. doi: 10.1016/j.biopsych.2008.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [70].Brummelte S., Galea L.A.M. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience. 2010;168:680–690. doi: 10.1016/j.neuroscience.2010.04.023. [DOI] [PubMed] [Google Scholar]
- [71].Porsolt R.D., Le Pichon M., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–732. doi: 10.1038/266730a0. [DOI] [PubMed] [Google Scholar]
- [72].Porsolt R.D., Bertin A., Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229:327–336. [PubMed] [Google Scholar]
- [73].Petit-Demouliere B., Chenu F., Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 2005;177:245–255. doi: 10.1007/s00213-004-2048-7. [DOI] [PubMed] [Google Scholar]
- [74].Cryan J.F., Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–357. doi: 10.1038/sj.mp.4001457. [DOI] [PubMed] [Google Scholar]
- [75].Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8:523–532. doi: 10.1097/00008877-199711000-00010. [DOI] [PubMed] [Google Scholar]
- [76].Cryan J.F., Valentino R.J., Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005;29:547–569. doi: 10.1016/j.neubiorev.2005.03.008. [DOI] [PubMed] [Google Scholar]
- [77].Porsolt R.D., Anton G., Blavet N., Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol. 1978;47:379–391. doi: 10.1016/0014-2999(78)90118-8. [DOI] [PubMed] [Google Scholar]
- [78].Porsolt R.D., Bertin A., Jalfre M. “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol. 1978;51:291–294. doi: 10.1016/0014-2999(78)90414-4. [DOI] [PubMed] [Google Scholar]
- [79].Lucki I., Dalvi A., Mayorga A.J. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001;155:315–322. doi: 10.1007/s002130100694. [DOI] [PubMed] [Google Scholar]
- [80].Dalvi A., Lucki I. Murine models of depression. Psychopharmacology (Berl) 1999;147:14–16. doi: 10.1007/s002130051131. [DOI] [PubMed] [Google Scholar]
- [81].David D.J., Renard C.E., Jolliet P., Hascoet M., Bourin M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 2003;166:373–382. doi: 10.1007/s00213-002-1335-4. [DOI] [PubMed] [Google Scholar]
- [82].Steru L., Chermat R., Thierry B., Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985;85:367–370. doi: 10.1007/BF00428203. [DOI] [PubMed] [Google Scholar]
- [83].Cryan J.F., Mombereau C., Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625. doi: 10.1016/j.neubiorev.2005.03.009. [DOI] [PubMed] [Google Scholar]
- [84].Bai F., Li X., Clay M., Lindstrom T., Skolnick P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav. 2001;70:187–192. doi: 10.1016/S0091-3057(01)00599-8. [DOI] [PubMed] [Google Scholar]
- [85].Whishaw I.Q., Tomie J. Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav. 1996;60:1191–1197. doi: 10.1016/S0031-9384(96)00176-X. [DOI] [PubMed] [Google Scholar]
- [86].Dulawa S.C., Hen R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev. 2005;29:771–783. doi: 10.1016/j.neubiorev.2005.03.017. [DOI] [PubMed] [Google Scholar]
- [87].Santarelli L., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–809. doi: 10.1126/science.1083328. [DOI] [PubMed] [Google Scholar]
- [88].Alonso R., Griebel G., Pavone G., Stemmelin J., Le Fur G., Soubrie P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry. 2004;9:278–286. doi: 10.1038/sj.mp.4001464. [DOI] [PubMed] [Google Scholar]
- [89].Griebel G., Simiand J., Serradeil-Le Gal C., Wagnon J., Pascal M., Scatton B., et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149-415, suggest an innovative approach for the treatment of stressrelated disorders. Proc Natl Acad Sci U S A. 2002;99:6370–6375. doi: 10.1073/pnas.092012099. [DOI] [PMC free article] [PubMed] [Google Scholar]