Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Aug 6;26(4):297–303. doi: 10.1007/s12264-010-0329-1

Increased expression level of corticotropin-releasing hormone in the amygdala and in the hypothalamus in rats exposed to chronic unpredictable mild stress

在慢性不可预见性温和应激下大鼠下丘脑和杏仁核中促肾上腺皮质素释放激素表达增高

Shan-Shan Wang 1,2, Xue-Bo Yan 2, Michel A Hofman 3, Dick F Swaab 3, Jiang-Ning Zhou 2,
PMCID: PMC5552574  PMID: 20651811

Abstract

Objective

Corticotropin-releasing hormone (CRH) plays an important role in neuroendocrine, autonomic and behavioral responses to stressors. In the present study, the effect of chronic unpredictable mild stress (CUMS) on CRH neurons was investigated in rat brain.

Methods

The rats were exposed to one of the stressors each day for 21 d. Immunostaining was performed to detect the CRH-positive neurons in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala.

Results

After the stress protocol, the animals showed a reduction in body weight gain as well as reduced sucrose preference and locomotor activity. Interestingly, the CRH neurons in both PVN and central nucleus of the amygdala (CeA) were stimulated by CUMS. The densities of CRH-containing neurons in both PVN and CeA were significantly higher than those in control group.

Conclusion

The CRH systems in PVN and CeA may both contribute to depression-like behaviors during CUMS.

Keywords: chronic unpredictable mild stress, hypothalamo-pituitary-adrenal axis, corticotropin-releasing hormone, amygdala, paraventricular nucleus

References

  • [1].Chappell P.B., Smith M.A., Kilts C.D., Bissette G., Ritchie J., Anderson C., et al. Alterations in corticotropin-releasing factor-like immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci. 1986;6(10):2908–2914. doi: 10.1523/JNEUROSCI.06-10-02908.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Stratakis C.A., Chrousos G.P. Neuroendocrinology and pathophysiology of the stress system. Ann N Y Acad Sci. 1995;771:1–18. doi: 10.1111/j.1749-6632.1995.tb44666.x. [DOI] [PubMed] [Google Scholar]
  • [3].Raadsheer F.C., Hoogendijk W.J., Stam F.C., Tilders F.J., Swaab D.F. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology. 1994;60(4):436–444. doi: 10.1159/000126778. [DOI] [PubMed] [Google Scholar]
  • [4].Raadsheer F.C., van Heerikhuize J.J., Lucassen P.J., Hoogendijk W.J., Tilders F.J., Swaab D.F. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry. 1995;152(9):1372–1376. doi: 10.1176/ajp.152.9.1372. [DOI] [PubMed] [Google Scholar]
  • [5].Nemeroff C.B., Widerlov E., Bissette G., Walleus H., Karlsson I., Eklund K., et al. Elevated concentrations of CSF corticotropinreleasing factor-like immunoreactivity in depressed patients. Science. 1984;226(4680):1342–1344. doi: 10.1126/science.6334362. [DOI] [PubMed] [Google Scholar]
  • [6].Swaab DF. The Human Hypothalamus: Basic and Clinical Aspects. Part II: Hypothalamic involvement in psychiatric disorders. Handbook of Clinical Neurology, Elsevier, 2004. Vol. 80. Chapter 26. [DOI] [PubMed]
  • [7].Stenzel-Poore M.P., Heinrichs S.C., Rivest S., Koob G.F., Vale W.W. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci. 1994;14(5Pt1):2579–2584. doi: 10.1523/JNEUROSCI.14-05-02579.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Liu Z., Zhu F., Wang G., Xiao Z., Wang H., Tang J., et al. Association of corticotropin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett. 2006;404(3):358–362. doi: 10.1016/j.neulet.2006.06.016. [DOI] [PubMed] [Google Scholar]
  • [9].Imaki T., Nahan J.L., Rivier C., Sawchenko P.E., Vale W. Differential regulation of corticotropin-releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci. 1991;11(3):585–599. doi: 10.1523/JNEUROSCI.11-03-00585.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Barbara Vollmayr F.A.H. Stress models of depression. Clin Neurosci Res. 2003;3:245–251. doi: 10.1016/S1566-2772(03)00086-0. [DOI] [Google Scholar]
  • [11].Ayensu W.K., Pucilowski O., Mason G.A., Overstreet D.H., Rezvani A.H., Janowsky D.S. Effects of chronic mild stress on serum complement activity, saccharin preference, and corticosterone levels in Flinders lines of rats. Physiol Behav. 1995;57(1):165–169. doi: 10.1016/0031-9384(94)00204-I. [DOI] [PubMed] [Google Scholar]
  • [12].Ostrander M.M., Ulrich-Lai Y.M., Choi D.C., Richtand N.M., Herman J.P. Hypoactivity of the hypothalamo-pituitary-adrenocortical axis during recovery from chronic variable stress. Endocrinology. 2006;147(4):2008–2017. doi: 10.1210/en.2005-1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Duncko R., Kiss A., Skultetyova I., Rusnak M., Jezova D. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology. 2001;26(1):77–89. doi: 10.1016/S0306-4530(00)00040-8. [DOI] [PubMed] [Google Scholar]
  • [14].Gray T.S., Bingaman E.W. The amygdala: corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol. 1996;10(2):155–168. doi: 10.1615/critrevneurobiol.v10.i2.10. [DOI] [PubMed] [Google Scholar]
  • [15].Hand G.A., Hewitt C.B., Fulk L.J., Stock H.S., Carson J.A., Davis J.M., et al. Differential release of corticotropin-releasing hormone (CRH) in the amygdala during different types of stressors. Brain Res. 2002;949(1–2):122–130. doi: 10.1016/S0006-8993(02)02972-4. [DOI] [PubMed] [Google Scholar]
  • [16].Hsu D.T., Chen F.L., Takahashi L.K., Kalin N.H. Rapid stress-induced elevations in corticotropin-releasing hormone mRNA in rat central amygdala nucleus and hypothalamic paraventricular nucleus: an in situ hybridization analysis. Brain Res. 1998;788(1–2):305–310. doi: 10.1016/S0006-8993(98)00032-8. [DOI] [PubMed] [Google Scholar]
  • [17].Makino S., Shibasaki T., Yamauchi N., Nishioka T., Mimoto T., Wakabayashi I., et al. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat. Brain Res. 1999;850(1–2):136–143. doi: 10.1016/S0006-8993(99)02114-9. [DOI] [PubMed] [Google Scholar]
  • [18].Gronli J., Bramham C., Murison R., Kanhema T., Fiske E., Bjorvatn B., et al. Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav. 2006;85(4):842–849. doi: 10.1016/j.pbb.2006.11.021. [DOI] [PubMed] [Google Scholar]
  • [19].Wu L.M., Han H., Wang Q.N., Hou H.L., Tong H., Yan X.B., et al. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology. 2007;32(12):2500–2510. doi: 10.1038/sj.npp.1301386. [DOI] [PubMed] [Google Scholar]
  • [20].Goodson J.L., Evans A.K., Lindberg L. Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol. 2004;473(3):293–314. doi: 10.1002/cne.20061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. Fourth Edition. San Diego, USA: Academic Press; 1998. [Google Scholar]
  • [22].Willner P., Towell A., Sampson D., Sophokleous S., Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987;93(3):358–364. doi: 10.1007/BF00187257. [DOI] [PubMed] [Google Scholar]
  • [23].Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997;134(4):319–329. doi: 10.1007/s002130050456. [DOI] [PubMed] [Google Scholar]
  • [24].Willner P., Muscat R., Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16(4):525–534. doi: 10.1016/S0149-7634(05)80194-0. [DOI] [PubMed] [Google Scholar]
  • [25].Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991;12(4):131–136. doi: 10.1016/0165-6147(91)90529-2. [DOI] [PubMed] [Google Scholar]
  • [26].Casarotto P.C., Andreatini R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. Eur Neuropsychopharmacol. 2007;17(11):735–742. doi: 10.1016/j.euroneuro.2007.03.001. [DOI] [PubMed] [Google Scholar]
  • [27].Chen X.N., Meng Q.Y., Bao A.M., Swaab D.F., Wang G.H., Zhou J.N. The involvement of retinoic acid receptor-alpha in corticotropin-releasing hormone gene expression and affective disorders. Biol Psychiatry. 2009;66(9):832–839. doi: 10.1016/j.biopsych.2009.05.031. [DOI] [PubMed] [Google Scholar]
  • [28].Iwata J., Chida K., LeDoux J.E. Cardiovascular responses elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not anesthetized rats resemble conditioned emotional responses. Brain Res. 1987;418(1):183–188. doi: 10.1016/0006-8993(87)90978-4. [DOI] [PubMed] [Google Scholar]
  • [29].LeDoux J.E., Iwata J., Cicchetti P., Reis D.J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci. 1988;8(7):2517–2529. doi: 10.1523/JNEUROSCI.08-07-02517.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Cook C.J. Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiol Behav. 2002;75(4):455–464. doi: 10.1016/S0031-9384(02)00650-9. [DOI] [PubMed] [Google Scholar]
  • [31].Lee Y., Davis M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci. 1997;17(16):6434–6446. doi: 10.1523/JNEUROSCI.17-16-06434.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Cook C.J. Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol Behav. 2004;82(4):751–762. doi: 10.1016/j.physbeh.2004.06.013. [DOI] [PubMed] [Google Scholar]
  • [33].Roozendaal B., Brunson K.L., Holloway B.L., McGaugh J.L., Baram T.Z. Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci U S A. 2002;99(21):13908–13913. doi: 10.1073/pnas.212504599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–375. doi: 10.1146/annurev.ne.15.030192.002033. [DOI] [PubMed] [Google Scholar]
  • [35].Gray T.S., Carney M.E., Magnuson D.J. Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology. 1989;50(4):433–446. doi: 10.1159/000125260. [DOI] [PubMed] [Google Scholar]
  • [36].Silverman A.J., Hou-Yu A., Chen W.P. Corticotropin-releasing factor synapses within the paraventricular nucleus of the hypothalamus. Neuroendocrinology. 1989;49(3):291–299. doi: 10.1159/000125131. [DOI] [PubMed] [Google Scholar]
  • [37].Tribollet E., Dreifuss J.J. Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience. 1981;6(7):1315–1328. doi: 10.1016/0306-4522(81)90190-1. [DOI] [PubMed] [Google Scholar]
  • [38].Imaki T., Katsumata H., Miyata M., Naruse M., Imaki J., Minami S. Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress. Neuroendocrinology. 2001;73(5):293–301. doi: 10.1159/000054646. [DOI] [PubMed] [Google Scholar]
  • [39].Imaki T., Naruse M., Harada S., Chikada N., Imaki J., Onodera H., et al. Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus. Brain Res Mol Brain Res. 1996;38(1):166–170. doi: 10.1016/0169-328X(96)00011-3. [DOI] [PubMed] [Google Scholar]
  • [40].Wang S.S., Kamphuis W., Huitinga I., Zhou J.N., Swaab D.F. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry. 2008;13(8):786–799. doi: 10.1038/mp.2008.38. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES