Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Mar 24;25(2):75–86. doi: 10.1007/s12264-009-0119-9

HLB-1 functions as a new regulator for the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans

HBL-1 参与秀丽线虫神经肌肉接头组装与功能的调控

Da-Yong Wang 1,, Yang Wang 1
PMCID: PMC5552579  PMID: 19290026

Abstract

Objective To study the role of HLB-1 in regulating the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans

Methods

To evaluate the functions of HLB-1 in regulating the organization and function of neuromuscular junctions, effects of hlb-1 mutation on the synaptic structures were revealed by uncovering the expression patterns of SNB-1::GFP and UNC-49::GFP, and pharmacologic assays with aldicarb and levamisole were also used to test the synaptic functions. Further rescue and mosaic analysis confirmed HLB-1’s role in regulating the organization and function of neuromuscular junctions.

Results

Loss of HLB-1 function did not result in defects in neuronal outgrowth or neuronal loss, but caused obvious defects of SNB-1::GFP and UNC-49::GFP puncta localization, suggesting the altered presynaptic and postsynaptic structures. The mutant animals exhibited severe defects in locomotion behaviors and altered responses to an inhibitor of acetylcholinesterase and a cholinergic agonist, indicating the altered presynaptic and postsynaptic functions. Rescue and mosaic analysis experiments suggested that HLB-1 regulated synaptic functions in a cell nonautonomously way. Moreover, HLB-1 expression was not required for the presynaptic active zone morphology. Genetic evidence further demonstrated that hlb-1 acted in a parallel pathway with syd-2 to regulate the synaptic functions.

Conclusion

HLB-1 appeared as a new regulator for the organization and function of neuromuscular junctions in C. elegans.

Keywords: HLB-1, synaptic function, neuromuscular junction, SYD-2, Caenorhabditis elegans

References

  • [1].Katz B. The Release of Neural Transmitter Substances. Liverpool: Liverpool Univ Press; 1969. [Google Scholar]
  • [2].Sun Y., Zhao Y.N., Wang D.Y. Computational analysis of genetic loci required for synapse structure and function and their corresponding microRNAs in C. elegans. Neurosci Bull. 2006;22:339–349. [PubMed] [Google Scholar]
  • [3].Garner C.C., Kindler S., Gundelfinger E.D. Molecular determinants of presynaptic active zones. Curr Opin Neurobiol. 2000;10:321–327. doi: 10.1016/S0959-4388(00)00093-3. [DOI] [PubMed] [Google Scholar]
  • [4].Shen L.L., Wang D.Y. Differentiation and function of presynaptic active zone. Neurosci Bull. 2005;21:335–343. [Google Scholar]
  • [5].Cowan W.M., Südhof T.C., Steven C.F. Synapses. Baltimore: Johns Hopkins Univ Press; 2001. [Google Scholar]
  • [6].Harlow M.L., Ress D., Stoschek A., Marshall R.M., McMahan U.J. The architecture of active zone material at the frog’s neuromuscular junction. Nature. 2001;409:479–484. doi: 10.1038/35054000. [DOI] [PubMed] [Google Scholar]
  • [7].Koushika S.P., Richmond J.E., Hadwiger G., Weimer R.M., Jorgensen E.M., Nonet M.L. A post-docking role for active zone protein Rim. Nat Neurosci. 2001;4:997–1005. doi: 10.1038/nn732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Richmond J.E., Davis W.S., Jorgensen E.M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 1999;2:959–964. doi: 10.1038/12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Zhen M., Jin Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature. 1999;401:371–375. doi: 10.1038/43886. [DOI] [PubMed] [Google Scholar]
  • [10].Dai Y., Taru H., Deken S.L., Grill B., Ackley B., Nonet M.L., et al. SYD-2 Liprin-α organized presynaptic active zone formation through ELKs. Nat Neurosci. 2006;9:1479–1487. doi: 10.1038/nn1808. [DOI] [PubMed] [Google Scholar]
  • [11].Wang D.Y., Wang Y. Screening for genetic loci affecting the active zone formation in C. elegans. Neurosci Bull. 2006;22:301–304. [PubMed] [Google Scholar]
  • [12].Serra-Pagès C., Medley Q.G., Tang M., Hart A., Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphataseinteracting proteins. J Biol Chem. 1998;273:15611–15620. doi: 10.1074/jbc.273.25.15611. [DOI] [PubMed] [Google Scholar]
  • [13].Brenner S. The genetics of Caenorhabdits elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Mello C.C., Kramer J.M., Stinchcomb D., Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991;10:3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Tsalik E.L., Hobert O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol. 2003;56:178–197. doi: 10.1002/neu.10245. [DOI] [PubMed] [Google Scholar]
  • [16].Huang C., Xiong C., Kornfeld K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci USA. 2004;101:8084–8089. doi: 10.1073/pnas.0400848101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Wang D.Y., Wang Y. Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol. 2008;54:447–453. doi: 10.1007/s00244-007-9050-0. [DOI] [PubMed] [Google Scholar]
  • [18].Bargmann C.I., Horvitz H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron. 1991;7:729–742. doi: 10.1016/0896-6273(91)90276-6. [DOI] [PubMed] [Google Scholar]
  • [19].Ye H.Y., Ye B.P., Wang D.Y. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposureinduced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem. 2008;90:10–18. doi: 10.1016/j.nlm.2007.12.001. [DOI] [PubMed] [Google Scholar]
  • [20].Nakata K., Abrams B., Grill B., Goncharov A., Huang X., Chisholm A.D., et al. Regulation of DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell. 2005;120:407–420. doi: 10.1016/j.cell.2004.12.017. [DOI] [PubMed] [Google Scholar]
  • [21].Ackley B.D., Kang S.H., Crew J.R., Suh C., Jin Y., Kramer J.M. The basement membrane components Nidogen and type XVIII collagen regulates organization of neuromuscular junctions in Caenorhabditis elegans. J Neurosci. 2003;23:3577–3587. doi: 10.1523/JNEUROSCI.23-09-03577.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Ackley B.D., Harrington R.J., Hudson M.L., Williams L., Kenyon C.J., Chisholm A.D., et al. The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci. 2005;25:7517–7528. doi: 10.1523/JNEUROSCI.2010-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Morse D.P., Bass B.L. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. Proc Natl Acad Sci USA. 1999;96:6048–6053. doi: 10.1073/pnas.96.11.6048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Kim J., Poole D.S., Waggoner L.E., Kempf A., Ramirez D.S., Treschow P.A., et al. Genes affecting the activity of nicotinic receptors involved in Caenorhabditis elegans egg-laying behavior. Genetics. 2001;157:1599–1610. doi: 10.1093/genetics/157.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Jorgensen E.M., Hartwieg E., Schuske K., Nonet M.L., Jin Y.S., Horvitz H.R. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabitis elegans. Nature. 1995;378:196–199. doi: 10.1038/378196a0. [DOI] [PubMed] [Google Scholar]
  • [26].Yochem J., Gu Y., Han M. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of hypodermis. Genetics. 1998;149:1323–1334. doi: 10.1093/genetics/149.3.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Miller K.G., Alfonso A., Nguyen M., Crowell J.A., Johnson C.D., Rand J.B. A genetic selection for Caenorhabdits elegans synaptic transmission mutants. Proc Natl Acad Sci USA. 1996;93:12593–12598. doi: 10.1073/pnas.93.22.12593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Waggoner L.E., Dickinson K.A., Poole D.S., Tabuse Y., Miwa J., Schafer W.R. Long-term nicotine adaptation in Caenorhabditis elegans involves PKC-dependent changes in nicotinic receptor abundance. J Neurosci. 2000;20:8802–8811. doi: 10.1523/JNEUROSCI.20-23-08802.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Jin Y., Jorgensen E., Hartwieg E., Horvitz H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci. 1999;19:539–548. doi: 10.1523/JNEUROSCI.19-02-00539.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Yeh E., Kawano T., Weimer R.M., Bessereau J., Zhen M. Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci. 2005;25:3833–3841. doi: 10.1523/JNEUROSCI.4978-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Patel M.R., Lehrman E.K., Poon V.Y., Crump J.G., Zhen M., Bargmann C.I., et al. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci. 2006;9:1488–1498. doi: 10.1038/nn1806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Schoch S., Castillo P., Jo T., Mukherjee K., Geppert M., Wang Y., et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature. 2002;415:321–326. doi: 10.1038/415321a. [DOI] [PubMed] [Google Scholar]
  • [33].Shin H., Wyszynski M., Huh K., Valtschanoff J.G., Lee J., Jaewon K., et al. Association of the kinesin motor KIF1A with the multimodular protein liprin-α. J Biol Chem. 2003;278:11393–11401. doi: 10.1074/jbc.M211874200. [DOI] [PubMed] [Google Scholar]
  • [34].Wyszynski M., Kim E., Dunah A.W., Passafaro M., Valtschanoff J.G., Serra-Pages C., et al. Interaction between GRIP and liprinalpha/SYD2 is required for AMPA receptor targeting. Neuron. 2002;34:39–52. doi: 10.1016/S0896-6273(02)00640-2. [DOI] [PubMed] [Google Scholar]
  • [35].Dunah A.W., Hueske E., Wyszynski M., Hoogenraad C.C., Jaworski J., Pak D.T., et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci. 2005;8:458–467. doi: 10.1038/nn1416. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES