Abstract
Objective
To identify the protective effect of lipopolysaccharide (LPS) preconditioning against LPS-induced inflammatory damage in dopaminergic neurons of midbrain slice culture and the possible mechanisms.
Methods
After cultured in vitro for 14 d, the rat organotypic midbrain slices were pretreated with different concentrations (0, 1, 3, 6 or 10 ng/mL) of LPS for 24 h followed by treatment with 100 ng/mL LPS for 72 h. The whole slice viability was determined by measurement of the activity of lactic acid dehydrogenase (LDH). Tyrosine hydroxylase-immunoreactive (TH-IR) neurons and CD11b/c equivalent-immunoreactive (OX-42-IR) microglia in the slices were observed by immunohistochemical method, and tumor necrosis factor-α (TNF-α) levels in the culture media were detected by enzymelinked immunosorbent assays (ELISA).
Results
In the slices treated with 100 ng/mL LPS for 72 h, the number of TH-IR neurons reduced from 191±12 in the control slices to 46±4, and the LDH activity elevated obviously (P < 0.01), along with remarkably increased number of OX-42-IR cells and production of TNF-α (P < 0.01). Preconditioning with 3 or 6 ng/mL LPS attenuated neuron loss (the number of TH-IR neurons increased to 126±12 and 180±13, respectively) and markedly reduced LDH levels (P < 0.05), accompanied by significant decreases of OX-42-IR microglia activation and TNF-α production (P < 0.05).
Conclusion
Low-dose LPS preconditioning could protect dopaminergic neurons against inflammatory damage in rat midbrain slice culture, and inhibition of microglial activation and reduction of the proinflammatory factor TNF-α production may contribute to this protective effect. Further understanding the underlying mechanism of LPS preconditioning may open a new window for treatment of Parkinson’s disease.
Keywords: lipopolysaccharide, preconditioning, neuroprotection, organotypic midbrain slice culture, dopaminergic neurons, inflammation, microglia, tumor necrosis factor-α
摘要
目的
探讨脂多糖(lipopolysaccharide, LPS)预处理对脂多糖所致中脑脑片多巴胺能神经元炎性损伤的影响及其可能的机制。
方法建立大鼠中脑脑片体外培养体系, 于体外培养14 d后以不同剂量脂多糖(0、 1、 3、 6及10 ng/mL)预处理24 h, 然后用大剂量脂多糖(100 ng/mL)作用72 h, 观察脂多糖预处理对脑片乳酸脱氢酶(lactic acid dehydrogenase, LDH)活性的影响。 通过免疫组化检测酪氨酸羟化酶(Tyrosine hydroxylase, TH)和OX-42的阳性细胞数变化, 应用酶联免疫吸附法测定培养液上清肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)水平。
结果
100 ng/mL脂多糖作用72 h后引起脑片TH阳性细胞数从对照组的191±12减少到46±4, LDH活性明显升高(P < 0.01), 小胶质细胞大量激活, TNF-α水平显著增高(P < 0.01)。 脂多糖预处理能减少神经细胞的丢失(3 ng/mL和6 ng/mL的LPS处理后TH阳性细胞数分别为126±12和180±13), 降低脑片LDH活性(P < 0.05), 并有效地抑制小胶质细胞的激活, 明显减少TNF-α的生成(P < 0.05)。
结论
小剂量脂多糖预处理可改善脂多糖对大鼠中脑脑片多巴胺能神经元的损伤, 其作用机制可能是通过抑制小胶质细胞的激活, 减少TNF-α的释放, 减轻炎症反应对神经元的损伤。 这种保护作用可为帕金森氏病的治疗提供新思路。
关键词: 脂多糖, 预处理, 神经保护, 中脑器官型脑片培养, 多巴胺能神经元, 炎症反应, 小胶质细胞, 肿瘤坏死因子-α
References
- [1].Blandini F., Nappi G., Tassorelli C., Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000;62:63–88. doi: 10.1016/S0301-0082(99)00067-2. [DOI] [PubMed] [Google Scholar]
- [2].McGeer P.L., Itagaki S., Boyes B.E., McGeer E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38:1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
- [3].Vila M., Jackson-Lewis V., Guegan C., Wu D., Teismann P., Choi D., et al. The role of glial cells in Parkinson’s disease. Curr Opin Neurol. 2001;14:483–489. doi: 10.1097/00019052-200108000-00009. [DOI] [PubMed] [Google Scholar]
- [4].Boka G., Anglade P., Wallach D., Javoy-Agid F., Agid Y., Hirsch E.C. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 1994;172:151–154. doi: 10.1016/0304-3940(94)90684-X. [DOI] [PubMed] [Google Scholar]
- [5].Nagatsu T., Mogi M., Ichinose H., Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl. 2000;58:143–151. [PubMed] [Google Scholar]
- [6].Czlonkowska A., Kurkowska-Jastrzebska I., Czlonkowski A., Peter D., Stefano G.B. Immune processes in the pathogenesis of Parkinson’s disease—a potential role for microglia and nitric oxide. Med Sci Monit. 2002;8:RA165–177. [PubMed] [Google Scholar]
- [7].Wyss-Coray T., Mucke L. Inflammation in neurodegenerative disease-a double-edged sword. Neuron. 2002;35:419–432. doi: 10.1016/S0896-6273(02)00794-8. [DOI] [PubMed] [Google Scholar]
- [8].Nguyen M.D., Julien J.P., Rivest S. Innate immunity: the missing link in neuroprotection and deurodegeneration? Nat Rev Neurosci. 2002;3:216–227. doi: 10.1038/nrn752. [DOI] [PubMed] [Google Scholar]
- [9].Lehnardt S., Massillon L., Follett P., Jensen F.E., Ratan R., Rosenberg P.A., et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA. 2003;100:8514–8519. doi: 10.1073/pnas.1432609100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Herrera A.J., Castaño A., Venero J.L., Cano J., Machado A. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis. 2000;7:429–447. doi: 10.1006/nbdi.2000.0289. [DOI] [PubMed] [Google Scholar]
- [11].Kim W.G., Mohney R.P., Wilson B., Jeohn G.H., Liu B., Hong J.S. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000;20:6309–6316. doi: 10.1523/JNEUROSCI.20-16-06309.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Gao H.M., Jiang J., Wilson B., Zhang W., Hong J.S., Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem. 2002;81:1285–1297. doi: 10.1046/j.1471-4159.2002.00928.x. [DOI] [PubMed] [Google Scholar]
- [13].Lepe-Zuniga J.L., Klostergaard J. Tolerance to endotoxin in vitro: independent regulation of interleukin-1, tumor necrosis factor and interferon alpha production during in vitro differentiation of human monocytes. Lymphokine Res. 1990;9:309–319. [PubMed] [Google Scholar]
- [14].Matic M., Simon S.R. Tumor necrosis factor release from lipopolysaccharide-stimulated human monocytes: lipopolysaccharide tolerance in vivo. Cytokine. 1991;3:576–583. doi: 10.1016/1043-4666(91)90484-U. [DOI] [PubMed] [Google Scholar]
- [15].Seatter S.C., Li M.H., Bubrick M.P., West M.A. Endotoxin pretreatment of human monocytes alters subsequent endotoxin-triggered release of inflammatory mediators. Shock. 1995;3:252–258. doi: 10.1097/00024382-199504000-00002. [DOI] [PubMed] [Google Scholar]
- [16].West M.A., Heagy W. Endotoxin tolerance: a review. Crit Care Med (1 Suppl) 2002;30:S64–S73. doi: 10.1097/00003246-200201001-00009. [DOI] [PubMed] [Google Scholar]
- [17].Rosenzweig H.L., Lessov N.S., Henshall D.C., Minami M., Simon R.P., Stenzel-Poore M.P. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke. 2004;35:2576–2581. doi: 10.1161/01.STR.0000143450.04438.ae. [DOI] [PubMed] [Google Scholar]
- [18].Davis A.E., Campbell S.J., Wilainam P., Anthony D.C. Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci. 2005;22:2441–2450. doi: 10.1111/j.1460-9568.2005.04447.x. [DOI] [PubMed] [Google Scholar]
- [19].Lastres-Becker I., Cartmell T., Molina-Holgado F. Endotoxin preconditioning protects neurones from in vitro ischemia: role of endogenous IL-1β and TNF-α. Neuroimmunol. 2006;173:108–116. doi: 10.1016/j.jneuroim.2005.12.006. [DOI] [PubMed] [Google Scholar]
- [20].Ostergaard K., Finsen B., Zimmer J. Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Exp Brain Res. 1995;103:70–84. doi: 10.1007/BF00241966. [DOI] [PubMed] [Google Scholar]
- [21].Gahwiler B.H., Capogna M., Debanne D., McKinney R.A., Thompson S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 1997;20:471–477. doi: 10.1016/S0166-2236(97)01122-3. [DOI] [PubMed] [Google Scholar]
- [22].Stoppini L., Buchs P.A., Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37:173–182. doi: 10.1016/0165-0270(91)90128-M. [DOI] [PubMed] [Google Scholar]
- [23].Shibata H., Katsuki H., Nishiwaki M., Kume T., Kaneko S., Akaike A. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin. J Neurochem. 2003;86:1201–1212. doi: 10.1046/j.1471-4159.2003.01929.x. [DOI] [PubMed] [Google Scholar]
- [24].Testa C.M., Sherer T.B., Greenamyre J.T. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134:109–118. doi: 10.1016/j.molbrainres.2004.11.007. [DOI] [PubMed] [Google Scholar]
- [25].Kearns S.M., Scheffler B., Goetz A.K., Lin D.D., Baker H.D., Roper S.N., et al. A method for a more complete in vitro Parkinson’s model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit. J Neurosci Methods. 2006;157:1–9. doi: 10.1016/j.jneumeth.2006.03.020. [DOI] [PubMed] [Google Scholar]
- [26].Ahmed S.H., He Y.Y., Nassief A., Xu J., Xu X.M., Hsu C.Y., et al. Effects of Lipopolysaccharide priming on acute ischemic brain injury. Stroke. 2000;31:193–199. doi: 10.1161/01.str.31.1.193. [DOI] [PubMed] [Google Scholar]
- [27].Haslberger A., Sayers T., Reiter H., Chung J., Schutze E. Reduced release of TNF-α and PCA from macrophages of tolerant mice. Circ Shock. 1988;26:185–192. [PubMed] [Google Scholar]
- [28].Erroi A., Fantuzzi G., Mengozzi M., Sironi M., Orencole S.F., Clark B.D., et al. Differential regulation of cytokine production in lipopolysaccharide tolerance in mice. Infect Immun. 1993;61:4356–4359. doi: 10.1128/iai.61.10.4356-4359.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Faggioni R., Fantuzzi G., Villa P., Buurman W., Ghezzi P. Independent down-regulation of central and peripheral tumor necrosis factor production as a result of lipopolysaccharide tolerance in mice. Infect Immun. 1995;63:1473–1477. doi: 10.1128/iai.63.4.1473-1477.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Pan W., Zadina J.E., Harlan R.E., Weber J.T., Banks W.A., Kastin A.J. Tumor necrosis factor-alpha: a neuromodulator in the CNS. Neurosci Biobehav Rev. 1997;21:603–613. doi: 10.1016/S0149-7634(96)00047-4. [DOI] [PubMed] [Google Scholar]
- [31].Muñoz-Fernández M.A., Fresno M. The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog Neurobiol. 1998;56:307–340. doi: 10.1016/S0301-0082(98)00045-8. [DOI] [PubMed] [Google Scholar]
- [32].Tasaki K., Ruetzler C.A., Ohtsuki T., Martin D., Nawashiro H., Hallenbeck J.M. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997;748:267–270. doi: 10.1016/S0006-8993(96)01383-2. [DOI] [PubMed] [Google Scholar]
- [33].Smith R.M., Suleman N., McCarthy J., Sack M. Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNF-α gene. Cardiovasc Res. 2002;55:553–560. doi: 10.1016/S0008-6363(02)00283-3. [DOI] [PubMed] [Google Scholar]
- [34].Nawashiro H., Tasaki K., Ruetzler C.A., Hallenbeck J.M. TNF-α pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 1997;17:483–490. doi: 10.1097/00004647-199705000-00001. [DOI] [PubMed] [Google Scholar]
- [35].Rosenzweig H.L., Minami M., Lessov N.S., Coste S.C., Stevens S.L., Henshall D.C., et al. Endotoxin preconditioning protects against the cytotoxic effects of TNF-α after stroke: a novel role for TNF-α in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27:1663–1674. doi: 10.1038/sj.jcbfm.9600464. [DOI] [PubMed] [Google Scholar]
- [36].Randow F., Syrbe U., Meisel C., Krausch D., Zuckermann H., Platzer C., et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor. J Exp Med. 1995;181:1887–1892. doi: 10.1084/jem.181.5.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Shnyra A., Brewington R., Alipio A., Amura C., Morrison D. Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol. 1998;160:3729–3736. [PubMed] [Google Scholar]
- [38].Bordet R., Deplanque D., Maboudou P., Puisieux F., Pu Q., Robin E., et al. Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance. J Cereb Blood Flow Metab. 2000;20:1190–1196. doi: 10.1097/00004647-200008000-00004. [DOI] [PubMed] [Google Scholar]