Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Dec 5;24(6):381. doi: 10.1007/s12264-008-2429-8

Immunologic pathogenesis of multiple sclerosis

多发性硬化的免疫学发病机制郭敏芳纪宁马存根

Min-Fang Guo 1, Ning Ji 1, Cun-Gen Ma 1,
PMCID: PMC5552594  PMID: 19037324

Abstract

Multiple sclerosis (MS) is an autoimmune disease. The etiology and pathogenesis of MS remain unclear. At present, there are substantial evidences to support the hypothesis that genetics plays a crucial role. The people who have genetic predisposing genes easily develop immune-mediated disorder, probably in conjunction with environmental factors. The aim of this review is to describe recent observations regarding the immunologic pathogenesis of MS.

Keywords: multiple sclerosis, immunology, pathogenesis

References

  • [1].Ando D.G., Clayton J., Kono D., Urban J.L., Sercarz E.E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989;124:132–143. doi: 10.1016/0008-8749(89)90117-2. [DOI] [PubMed] [Google Scholar]
  • [2].Huseby E.S., Liggitt D., Brabb T., Schnabel B., Ohlén C., Goverman J. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med. 2001;194:669–676. doi: 10.1084/jem.194.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Crawford M.P., Yan S.X., Ortega S.B., Mehta R.S., Hewitt R.E., Price D.A., et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood. 2004;103:4222–4231. doi: 10.1182/blood-2003-11-4025. [DOI] [PubMed] [Google Scholar]
  • [4].Link H. The cytokine storm in multiple sclerosis. Mult Scler. 1998;4:12–15. doi: 10.1191/135245898678909141. [DOI] [PubMed] [Google Scholar]
  • [5].Trinchieri G., Pflanz S., Kastelein R.A. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19:641–644. doi: 10.1016/S1074-7613(03)00296-6. [DOI] [PubMed] [Google Scholar]
  • [6].Xiao B.G., Ma C.G., Xu L.Y., Link H., Lu C.Z. IL-12/IFN-γ/NO axis plays critical role in development of Th1-mediated experimental autoimmune encephalomyelitis. Mol Immunol. 2008;45:1191–1196. doi: 10.1016/j.molimm.2007.07.003. [DOI] [PubMed] [Google Scholar]
  • [7].Hedegaard C.J., Krakauer M., Bendtzen K., Lund H., Sellebjerg F., Nielsen C.H. T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology. 2008;125:161–169. doi: 10.1111/j.1365-2567.2008.02837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Frohman E.M., Filippi M., Stuve O., Waxman S.G., Corboy J., Phillips J.T., et al. Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch Neurol. 2005;62:1345–1356. doi: 10.1001/archneur.62.9.1345. [DOI] [PubMed] [Google Scholar]
  • [9].Falcone M., Rajan A.J., Bloom B.R., Brosnan C.F. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol. 1998;160:4822–4830. [PubMed] [Google Scholar]
  • [10].Bettelli E., Das M.P., Howard E.D., Weiner H.L., Sobel R.A., Kuchroo V.K. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient and transgenic mice. J Immunol. 1998;161:3299–3306. [PubMed] [Google Scholar]
  • [11].Vieira P.L., Heystek H.C., Wormmeester J., Wierenga E.A., Kapsenberg M.L. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol. 2003;170:4483–4488. doi: 10.4049/jimmunol.170.9.4483. [DOI] [PubMed] [Google Scholar]
  • [12].Weir C., Bernard C.C., Backstrom B.T. IL-5 deficient mice are susceptible to experimental autoimmune encephlomyelitis. Int Immunol. 2003;15:1283–1289. doi: 10.1093/intimm/dxg127. [DOI] [PubMed] [Google Scholar]
  • [13].Willenborg D.O., Fordham S.A., Cowden W.B., Ramshaw I.A. Cytokines and murine autoimmune encephalomyelitis: Inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand J Immunol. 1995;41:31–41. doi: 10.1111/j.1365-3083.1995.tb03530.x. [DOI] [PubMed] [Google Scholar]
  • [14].Fujimoto M., Serada S., Naka T. Role of IL-6 in the development and pathogenesis of CIA and EAE. Nihon Rinsho Meneki Gakkai Kaishi. 2008;31:78–84. doi: 10.2177/jsci.31.78. [DOI] [PubMed] [Google Scholar]
  • [15].Serada S., Fujimoto M., Mihara M., Koike N., Ohsugi Y., Nomura S., et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci. 2008;105:9041–9046. doi: 10.1073/pnas.0802218105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Ma C.G., Liu Y., Ma T.H., Liu H., Liang L.Y., Zhang L.H. Monocyte chemokine protein-1 mRNA expression in experimental allergic encephalomyelitis rats treated with or without triptolide. J Neurol Sci. 2005;238:234. [Google Scholar]
  • [17].McDevitt H. Specific antigen vaccination to treat autoimmune disease. Proc Natl Acad Sci. 2004;101:14627–14630. doi: 10.1073/pnas.0405235101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Zhang G.X., Xu H., Kishi M., Calida D., Rostami A. The role of IL-12 in the induction of intravenous tolerance in experimental autoimmune encephalomyelitis. J Immunol. 2002;168:2501–2507. doi: 10.4049/jimmunol.168.5.2501. [DOI] [PubMed] [Google Scholar]
  • [19].Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol. 2001;2:762–764. doi: 10.1038/ni0901-762. [DOI] [PubMed] [Google Scholar]
  • [20].Cabarrocas J., Bauer J., Piaggio E., Liblau R., Lassmann H. Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol. 2003;33:1174–1182. doi: 10.1002/eji.200323492. [DOI] [PubMed] [Google Scholar]
  • [21].Ford M.L., Evavold B.D. Specificity, magnitude, and kinetics of MOG-specific CD8(+)T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol. 2005;35:76–85. doi: 10.1002/eji.200425660. [DOI] [PubMed] [Google Scholar]
  • [22].Ferrante P., Fusi M.L., Saresella M., Caputo D., Biasin M., Trabattoni D., et al. Cytokine production and surface marker expression in acute and stable multiple sclerosis: altered IL-12 production and augmented signaling lymphocytic activation molecule (SLAM)-expressing lymphocytes in acute multiple sclerosis. J Immunol. 1998;160:1514–1521. [PubMed] [Google Scholar]
  • [23].Huang W.X., Huang M.P., Gomes M.A., Hillert J. Apoptosis mediators FasL and TRAIL are upregulated in peripheral blood mononuclear cells in MS. Neurology. 2000;55:928–934. doi: 10.1212/wnl.55.7.928. [DOI] [PubMed] [Google Scholar]
  • [24].Waldner H., Sobel R.A., Howard E., Kuchroo V.K. Fas-and FasL-deficient mice are resistant to induction of autoimmune encephalomyelitis. J Immunol. 1997;159:3100–3103. [PubMed] [Google Scholar]
  • [25].Lopatinskaya L., Zwemmer J., Uitdehaag B., Lucas K., Polman C., Nagelkerken L. Mediators of apoptosis Fas and FasL predict disability progression in multiple sclerosis over a period of 10 years. Mult Scler. 2006;12:704–709. doi: 10.1177/1352458506070826. [DOI] [PubMed] [Google Scholar]
  • [26].Hövelmeyer N., Hao Z., Kranidioti K., Kassiotis G., Buch T., Frommer F., et al. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J Immunol. 2005;175:5875–5884. doi: 10.4049/jimmunol.175.9.5875. [DOI] [PubMed] [Google Scholar]
  • [27].Julià E., Montalban X., Al-Zayat H., Issazadeh-Navikas S., Goertsches R., Martin R., et al. Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis. J Neuroimmunol. 2006;180:147–158. doi: 10.1016/j.jneuroim.2006.07.001. [DOI] [PubMed] [Google Scholar]
  • [28].Hallal-Longo D.E., Mirandola S.R., Oliveira E.C., Farias A.S., Pereira F.G., Metze I.L., et al. Diminished myelin-specific T cell activation associated with increase in CTLA4 and Fas molecules in multiple sclerosis patients treated with IFN-beta. J Interferon Cytokine Res. 2007;27:865–873. doi: 10.1089/jir.2007.0018. [DOI] [PubMed] [Google Scholar]
  • [29].Dalakas M.C. The molecular and cellular pathology of inflammatory muscle diseases. Curr Opin Pharmacol. 2001;1:300–306. doi: 10.1016/S1471-4892(01)00053-4. [DOI] [PubMed] [Google Scholar]
  • [30].Janeway C.A., Travers P., Walport M. Immunobiology: the immune system in health and disease. NewYork, NY: Churchill Livingstone Press; 2001. [Google Scholar]
  • [31].Ortler S., Leder C., Mittelbronn M., Zozulya A.L., Knolle P.A., Chen L., et al. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: Implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol. 2008;38:1734–1744. doi: 10.1002/eji.200738071. [DOI] [PubMed] [Google Scholar]
  • [32].Husted C. Structural insight into the role of myelin basic protein in multiple sclerosis. Proc Natl Acad Sci. 2006;103:4339–4340. doi: 10.1073/pnas.0601002103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Carson J.H., Barbarese E., Braun P.E., McPherson T.A. Components in multiple sclerosis cerebrospinal fluid that are detected by radioimmunoassay for myelin basic protein. Proc Natl Acad Sci. 1978;75:1976–1978. doi: 10.1073/pnas.75.4.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Zamvil S., Nelson P., Trotter J., Mitchell D., Knobler R., Fritz R., et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature. 1985;317:355–358. doi: 10.1038/317355a0. [DOI] [PubMed] [Google Scholar]
  • [35].Huseby E.S., Liggitt D., Brabb T., Schnabel B., Ohlén C., Goverman J. A pathogenic role for myelin-specific CD8 T cells in a model for multiple sclerosis. J Exp Med. 2001;194:669–676. doi: 10.1084/jem.194.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Biddison W.E., Taub D.D., Cruikshank W.W., Center D.M., Connor E.W., Honma K. Chemokine and matrix metalloproteinase secretion by myelin proteolipid protein specific CD8+ T cells: potential roles in inflammation. J Immunol. 1997;158:3046–3053. [PubMed] [Google Scholar]
  • [37].Dasgupta S., Jana M., Liu X.J., Pahan K. Myelin basic proteinprimed T cells of female but not male mice induce nitric-oxide synthase and proinflammatory cytokines in microglia: implications for gender bias in multiple sclerosis. J Biol Chem. 2005;280:32609–32617. doi: 10.1074/jbc.M500299200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Aboul-Enein F., Bauer J., Klein M., Schubart A., Flügel A., Ritter T., et al. Selective and antigen-dependent effects of myelin degeneration on central nervous system inflammation. J Neuropathol Exp Neurol. 2004;63:1284–1296. doi: 10.1093/jnen/63.12.1284. [DOI] [PubMed] [Google Scholar]
  • [39].Keegan M., König F., McClelland R., Brück W., Morales Y., Bitsch A., et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet. 2005;366:579–582. doi: 10.1016/S0140-6736(05)67102-4. [DOI] [PubMed] [Google Scholar]
  • [40].Piddlesden S.J., Lassmann H., Zimprich F., Morgan B.P., Linington C. The demyelinating potential of antibodies to myelin oligoden-drocyte glycoprotein is related to their ability to fix complement. Am J Pathol. 1993;143:555–564. [PMC free article] [PubMed] [Google Scholar]
  • [41].Lalive P.H., Menge T., Delarasse C., Della Gaspera B., Pham-Dinh D., Villoslada P., et al. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci. 2006;103:2280–2285. doi: 10.1073/pnas.0510672103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Haase C.G., Guggenmos J., Brehm U., Andersson M., Olsson T., Reindl M., et al. The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J Neuroimmunol. 2001;114:220–225. doi: 10.1016/S0165-5728(00)00462-8. [DOI] [PubMed] [Google Scholar]
  • [43].Kuhle J., Pohl C., Mehling M., Edan G., Freedman M.S., Hartung H.P., et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med. 2007;356:371–378. doi: 10.1056/NEJMoa063602. [DOI] [PubMed] [Google Scholar]
  • [44].Zappia E., Casazza S., Pedemonte E., Benvenuto F., Bonanni I., Gerdoni E., et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–1761. doi: 10.1182/blood-2005-04-1496. [DOI] [PubMed] [Google Scholar]
  • [45].Saccardi R., Mancardi G.L., Solari A., Bosi A., Bruzzi P., DiBartolomeo P., et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood. 2005;105:2601–2607. doi: 10.1182/blood-2004-08-3205. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES