Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Oct 8;26(5):388–394. doi: 10.1007/s12264-010-0412-7

Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation

背缝神经核的电刺激对经过长期感觉剥夺的大鼠皮层IV 层神经元的神经应答 特性的影响

Sheikhkanloui-Milan Hamid 1, Sheibani Vahid 1,, Afarinesh Mohammadreza 1, Esmaeili-Mahani Saeed 2, Shamsizadeh Ali 3, Sepehri Golamreza 1
PMCID: PMC5552602  PMID: 20882065

Abstract

Objective

To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation.

Methods

Male Wistar rats were divided into sensorydeprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8–10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection.

Results

PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups.

Conclusion

These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex.

Keywords: sensory system, barrel cortex, 5-hydroxytryptamine receptors

References

  • [1].Bialy M., Beck J. The influence of vibrissae removal on copulatory behaviour in male rats. Acta Neurobiol Exp (Wars) 1993;53(2):415–419. [PubMed] [Google Scholar]
  • [2].Kyriazi H., Carvell G.E., Brumberg J.C., Simons D.J. Laminar differences in bicuculline methiodide’s effects on cortical neurons in the rat whisker/barrel system. Somatosens Mot Res. 1998;15(2):146–156. doi: 10.1080/08990229870871. [DOI] [PubMed] [Google Scholar]
  • [3].Shamsizadeh A., Sheibani V., Arabzadeh S., Afarinesh M.R., Farazifard R., Noorbakhsh S.M., et al. Single whisker experience started on postnatal days 0, 5 or 8 changes temporal characteristics of response integration in layers IV and V of rat barrel cortex neurons. Brain Res Bull. 2007;74(1–3):29–36. doi: 10.1016/j.brainresbull.2007.04.010. [DOI] [PubMed] [Google Scholar]
  • [4].Van der Loos H., Woolsey T.A. Somatosensory cortex: structural alterations following early injury to sense organs. Science. 1973;179(71):395–398. doi: 10.1126/science.179.4071.395. [DOI] [PubMed] [Google Scholar]
  • [5].Polley D.B., Chen-Bee C.H., Frostig R.D. Two directions of plasticity in the sensory-deprived adult cortex. Neuron. 1999;24(3):623–637. doi: 10.1016/S0896-6273(00)81117-4. [DOI] [PubMed] [Google Scholar]
  • [6].Rema V., Armstrong-James M., Ebner F.F. Experience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life. J Neurosci. 2003;23(1):358–366. doi: 10.1523/JNEUROSCI.23-01-00358.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Fox K. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience. 2002;111(4):799–814. doi: 10.1016/S0306-4522(02)00027-1. [DOI] [PubMed] [Google Scholar]
  • [8].Glazewski S., Barth A.L., Wallace H., McKenna M., Silva A., Fox K. Impaired experience-dependent plasticity in barrel cortex of mice lacking the alpha and delta isoforms of CREB. Cereb Cortex. 1999;9(3):249–256. doi: 10.1093/cercor/9.3.249. [DOI] [PubMed] [Google Scholar]
  • [9].Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience. 2002;111(4):815–835. doi: 10.1016/S0306-4522(02)00026-X. [DOI] [PubMed] [Google Scholar]
  • [10].Lidov H.G., Molliver M.E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res Bull. 1982;8(4):389–430. doi: 10.1016/0361-9230(82)90077-6. [DOI] [PubMed] [Google Scholar]
  • [11].Araneda R., Andrade R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience. 1991;40(2):399–412. doi: 10.1016/0306-4522(91)90128-B. [DOI] [PubMed] [Google Scholar]
  • [12].Blue M.E., Yagaloff K.A., Mamounas L.A., Hartig P.R., Molliver M.E. Correspondence between 5-HT2 receptors and serotoner gic axons in rat neocortex. Brain Res. 1988;453(1–2):315–328. doi: 10.1016/0006-8993(88)90172-2. [DOI] [PubMed] [Google Scholar]
  • [13].Sheibani V., Farazifard R. Dorsal raphe nucleus stimulation modulates the response of layers IV and V barrel cortical neurons in rat. Brain Res Bull. 2006;68(6):430–435. doi: 10.1016/j.brainresbull.2005.09.017. [DOI] [PubMed] [Google Scholar]
  • [14].Fox K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J Neurosci. 1992;12(5):1826–1838. doi: 10.1523/JNEUROSCI.12-05-01826.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates: Academic Press, 1986.
  • [16].Simons D.J., Carvell G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol. 1989;61(2):311–330. doi: 10.1152/jn.1989.61.2.311. [DOI] [PubMed] [Google Scholar]
  • [17].Vandermaelen C.P., Aghajanian G.K. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 1983;289(1–2):109–119. doi: 10.1016/0006-8993(83)90011-2. [DOI] [PubMed] [Google Scholar]
  • [18].Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 1979;171(1):11–28. doi: 10.1016/0006-8993(79)90728-5. [DOI] [PubMed] [Google Scholar]
  • [19].Barnes N.M., Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–1152. doi: 10.1016/S0028-3908(99)00010-6. [DOI] [PubMed] [Google Scholar]
  • [20].Simons D.J., Land P.W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature. 1987;326(6114):694–697. doi: 10.1038/326694a0. [DOI] [PubMed] [Google Scholar]
  • [21].Fuchs J.L., Salazar E. Effects of whisker trimming on GABA(A) receptor binding in the barrel cortex of developing and adult rats. J Comp Neurol. 1998;395(2):209–216. doi: 10.1002/(SICI)1096-9861(19980601)395:2<209::AID-CNE5>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • [22].Morilak D.A., Garlow S.J., Ciaranello R.D. Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience. 1993;54(3):701–717. doi: 10.1016/0306-4522(93)90241-7. [DOI] [PubMed] [Google Scholar]
  • [23].Mansour-Robaey S., Mechawar N., Radja F., Beaulieu C., Descarries L. Quantified distribution of serotonin transporter and receptors during the postnatal development of the rat barrel field cortex. Brain Res Dev Brain Res. 1998;107(1):159–163. doi: 10.1016/S0165-3806(98)00016-9. [DOI] [PubMed] [Google Scholar]
  • [24].Cases O., Vitalis T., Seif I., De Maeyer E., Sotelo C., Gaspar P. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron. 1996;16(2):297–307. doi: 10.1016/S0896-6273(00)80048-3. [DOI] [PubMed] [Google Scholar]
  • [25].Lopez-Costa J.J., Acuipil C., Tagliaferro P., Patel S., Ramos J., Brusco A., et al. Distribution of NADPH-diaphorase in rat mesencephalon: a light and electron microscopical study. Biocell. 2002;26(2):247–252. [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES