Abstract
Objective
To investigate the interaction between the genes required for the functions of AWA olfactory neuron and insulin/IGF signaling in regulating the longevity of nematode Caenorhabditis elegans (C. elegans).
Methods
The mutants that had loss-of-function mutation of the genes required for AWA, AWC, ASE, and AFD sensory neurons were employed. Lifespan, the speed of pharynx pumping, the intestinal autofluorescence, the dauer formation, and the brood size were examined. Rescue experiments were performed to confirm the role of the genes required for the functions of AWA neuron in regulating lifespan. Moreover, genetic interactions between genes required for the functions of AWA neuron and insulin/IGF signaling were investigated.
Results
Mutations of odr-7, odr-2, and odr-3 genes required for the functions of AWA neuron significantly increased the mean lifespan of nematodes and slowed the accumulation of intestinal autofluorescence. Besides, these mutations were closely associated with higher pumping rates during aging. However, mutation of odr-7, odr-2, or odr-3 did not obviously affect the brood size or the dauer formation, and the regulation of longevity by odr-7, odr-2, and odr-3 was temperature-independent. In contrast, mutations of genes required for the functions of ASE, AWC, and AFD sensory neurons did not influence the nematode lifespan. Moreover, expression of odr-7, odr-2 and odr-3 in AWA neuron could completely or largely restore the altered lifespan in odr-7, odr-2 and odr-3 mutants. Furthermore, genetic interaction assay demonstrated that the extended lifespan in odr-7 mutant could be suppressed by daf-16 mutation and enhanced by daf-2 or age-1 mutation, whereas mev-1 and pha-4 were not required for the long lifespan of odr-7 mutant.
Conclusion
The genes required for the function of AWA sensory neuron could regulate the nematode longevity in an insulin/IGF signaling-dependent fashion in C. elegans.
Keywords: longevity, ODR-7, AWA olfactory neuron, insulin/IGF signaling, genetic interaction, C. elegans
摘要
目的
研究嗅觉神经元AWA 功能必需基因与胰岛素信号之间在调控秀丽线虫衰老上的关系。
方法
测定AWA、 AWC、 ASE 与AFD 感觉神经元的功能必需基因突变后线虫的寿命、 咽泵运动速率、 肠道荧光、 永久性幼虫形成与后代数目的变化。 此外, 进行基因功能的恢复实验以确认AWA功能必需基因在调控衰老中的作用。 最后, 对AWA功能必需基因与胰岛素信号间在调控衰老上的遗传关系进行了分析。
结果
AWA功能必需基因odr-7 、 odr-2与odr-3突变能显著延长动物寿命, 并在衰老过程中诱导产生相对于野生型更高的咽泵运动速率和更少的肠道脂褐质积累。 然而, odr-7、 odr-2与odr-3的基因突变并不影响线虫的后代数目与永久性幼虫的形成, 且odr-7、 odr-2与odr-3基因对于寿命的调控并未呈现出明显的温度依赖性。 比较而言, 感觉神经元ASE、 AWC与AFD的功能必需基因的突变并未显著影响动物寿命。 而且, 在嗅觉神经元AWA 表达odr-7、 odr-2 与odr-3 基因可以完全或很大程度上恢复对应突变体的长寿表现型。 进一步遗传分析表明, odr-7突变体的长寿表现型可被daf-16基因突变所抑制, 被daf-2或age-1基因突变所增强, 而mev-1与pha-4基因突变对此并不产生影响。
结论
嗅觉神经元AWA功能必需基因以胰岛素信号依赖的方式调控秀丽线虫的衰老。
关键词: 寿命, ODR-7, AWA嗅觉神经元, 胰岛素信号, 遗传相互作用, 秀丽线虫
References
- [1].Klass M.R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev. 1977;6:413–429. doi: 10.1016/0047-6374(77)90043-4. [DOI] [PubMed] [Google Scholar]
- [2].Braeckman B.P., Vanfleteren J.R. Genetic control of longevity in C. elegans. Exp Gerontol. 2007;42:90–98. doi: 10.1016/j.exger.2006.04.010. [DOI] [PubMed] [Google Scholar]
- [3].Shen L.L., Wang Y., Wang D.Y. Involvement of genes required for synaptic function in aging control in C. elegans. Neurosci Bull. 2007;23:21–29. doi: 10.1007/s12264-007-0003-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Wolkow C.A., Kimura K.D., Lee M., Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science. 2000;290:147–150. doi: 10.1126/science.290.5489.147. [DOI] [PubMed] [Google Scholar]
- [5].Apfeld J., Kenyon C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature. 1999;402:804–809. doi: 10.1038/45544. [DOI] [PubMed] [Google Scholar]
- [6].White J.G., Southgate E., Thomson J.N., Brenner S. The structure of the nervous system of the nematode C. elegans. Phil Trans R Soc Lond B. 1986;314:1–340. doi: 10.1098/rstb.1986.0056. [DOI] [PubMed] [Google Scholar]
- [7].Mori I., Ohshima Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. BioEssays. 1997;19:1055–1064. doi: 10.1002/bies.950191204. [DOI] [PubMed] [Google Scholar]
- [8].Hu Y.O., Sun Y., Ye B.P., Wang D.Y. Computational analysis of genetic loci required for amphid structure and functions and their possibly corresponding microRNAs in C. elegans. Neurosci Bull. 2007;23:9–20. doi: 10.1007/s12264-007-0002-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Fujii M., Matsumoto Y., Tanaka N., Miki K., Suzuki T., Ishii N., et al. Mutations in chemosensory cilia cause resistance to paraquat in nematode Caenorhabditis elegans. J Biol Chem. 2004;279:20277–20282. doi: 10.1074/jbc.M313119200. [DOI] [PubMed] [Google Scholar]
- [10].Alcedo J., Kenyon C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron. 2004;41:45–55. doi: 10.1016/S0896-6273(03)00816-X. [DOI] [PubMed] [Google Scholar]
- [11].Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Donkin S., Williams P.L. Influence of developmental stage, salts and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testing. Environ Appl Toxicol. 1995;14:2139–2147. [Google Scholar]
- [13].Wilson M.A., Shukitt-Hale B., Kalt W., Ingram D.K., Joseph J.A., Wolkow C.A. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell. 2006;5:59–68. doi: 10.1111/j.1474-9726.2006.00192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Huang C., Xiong C., Kornfeld K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2004;101:8084–8089. doi: 10.1073/pnas.0400848101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Rui Q., Lu Q., Wang D.Y. Administration of Bushenkangshuai Tang alleviates the UV irradiation- and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China. 2009;3:76–90. doi: 10.1007/s11684-009-0002-0. [DOI] [Google Scholar]
- [16].Garigan D., Hsu A.L., Fraser A.G., Kamath R.S., Ahringer J., Kenyon C. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics. 2002;161:1101–1112. doi: 10.1093/genetics/161.3.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Boehm M., Slack F.A. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 2005;310:1954–1957. doi: 10.1126/science.1115596. [DOI] [PubMed] [Google Scholar]
- [18].Wang X.Y., Shen L.L., Yu H.X., Wang D.Y. Toxicity evaluation in a paper recycling mill effluent by coupling bioindicator of aging with the toxicity identification evaluation method in nematode Caenorhabditis elegans. J Environ Sci. 2008;20:1373–1380. doi: 10.1016/S1001-0742(08)62235-4. [DOI] [PubMed] [Google Scholar]
- [19].Guo Y.L., Yang Y.C., Wang D.Y. Induction of reproductive deficits in nematode Caenorhabditis elegans exposed to metals at different developmental stages. Reprod Toxicol. 2009;28:90–95. doi: 10.1016/j.reprotox.2009.03.007. [DOI] [PubMed] [Google Scholar]
- [20].Xiao J., Rui Q., Guo Y.L., Chang X.Y., Wang D.Y. Prolonged manganese exposure induces severe deficits in lifespan, development and reproduction possibly by altering oxidative stress response in Caenorhabditis elegans. J Environ Sci. 2009;21:842–848. doi: 10.1016/S1001-0742(08)62350-5. [DOI] [PubMed] [Google Scholar]
- [21].Mello C.C., Kramer J.M., Stinchcomb D., Ambros V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequence. EMBO J. 1991;10:3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Wang D.Y., Wang Y. HLB-1 functions as a new regulator for the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans. Neurosci Bull. 2009;25:75–86. doi: 10.1007/s12264-009-0119-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Sengupta P., Colbert H.A., Bargmann C.I. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell. 1994;79:971–980. doi: 10.1016/0092-8674(94)90028-0. [DOI] [PubMed] [Google Scholar]
- [24].Sengupta P., Chou J.H., Bargmann C.I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell. 1996;84:899–909. doi: 10.1016/S0092-8674(00)81068-5. [DOI] [PubMed] [Google Scholar]
- [25].Roayaie K., Crump J.G., Sagasti A., Bargmann C.I. The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron. 1998;20:55–67. doi: 10.1016/S0896-6273(00)80434-1. [DOI] [PubMed] [Google Scholar]
- [26].Chou J.H., Bargmann C.I., Sengupta P. The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction. Genetics. 2001;157:211–224. doi: 10.1093/genetics/157.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Uchida O., Nakano H., Koga M., Ohshima Y. The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development. 2001;130:1215–1224. doi: 10.1242/dev.00341. [DOI] [PubMed] [Google Scholar]
- [28].Chang S., Johnson R.J., Jr, Frokjaer-Jensen C., Lockery S., Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004;430:785–789. doi: 10.1038/nature02752. [DOI] [PubMed] [Google Scholar]
- [29].Satterlee J.S., Sasakura H., Kuhara A., Berkeley M., Mori I., Sengupta P. Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron. 2001;31:943–956. doi: 10.1016/S0896-6273(01)00431-7. [DOI] [PubMed] [Google Scholar]
- [30].L’Etoile N.D., Bargmann C.I. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron. 2000;25:575–586. doi: 10.1016/S0896-6273(00)81061-2. [DOI] [PubMed] [Google Scholar]
- [31].Vowels J.J., Thomas J.H. Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics. 1994;138:303–316. doi: 10.1093/genetics/138.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Inoue T., Thomas J.H. Suppressors of transforming growth factor-â pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics. 2000;156:1035–1046. doi: 10.1093/genetics/156.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Simmer F., Moorman C., van der Linden A.M., Kuijk E., van der Berghe P.V., Kamath R.S., et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1:e12. doi: 10.1371/journal.pbio.0000012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
- [35].Ogg S., Paradis S., Gottlieb S., Patterson G.I., Lee L., Tissenbaum H.A., et al. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997;389:994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
- [36].Lin K., Dorman J.B., Rodan A., Kenyon C. daf-16: an HNF-3/forkhead family member that can function to double the lifespan of Caenorhabditis elegans. Science. 1997;278:1319–1322. doi: 10.1126/science.278.5341.1319. [DOI] [PubMed] [Google Scholar]
- [37].Murphy C.T., McCarroll S.A., Bargmann C.I., Fraser A., Kamath R.S., Ahringer J., et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–284. doi: 10.1038/nature01789. [DOI] [PubMed] [Google Scholar]
- [38].Ishii N., Fujii M., Hartman P.S., Tsuda M., Yasuda K., Senoo-Matsuda N., et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature. 1998;394:694–697. doi: 10.1038/29331. [DOI] [PubMed] [Google Scholar]
- [39].Panowski S.H., Wolff S., Aguilaniu H., Durieux J., Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature. 2007;447:550–556. doi: 10.1038/nature05837. [DOI] [PubMed] [Google Scholar]
- [40].Kimura K.D., Tissenbaum H.A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
- [41].Morris J.Z., Tissenbaum H.A., Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
- [42].Gems D., Sutton A.J., Sundermeyer M.L., Albert P.S., King K.V., Eddley M.L., et al. Two pleiotropic classes of daf-2 mutations affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998;150:129–155. doi: 10.1093/genetics/150.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Sampayo J.N., Olsen A., Lithgow G.J. Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell. 2003;2:319–326. doi: 10.1046/j.1474-9728.2003.00063.x. [DOI] [PubMed] [Google Scholar]
- [44].Mukhopadhyay A., Deplancke B., Walhout A.J.M., Tissenbaum H.A. C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab. 2005;2:35–42. doi: 10.1016/j.cmet.2005.06.004. [DOI] [PubMed] [Google Scholar]