Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Oct 7;25(5):237. doi: 10.1007/s12264-009-0905-4

Roles of the hippocampal formation in pain information processing

海马结构在疼痛信息处理中的作用

Ming-Gang Liu 1, Jun Chen 1,2,
PMCID: PMC5552607  PMID: 19784080

Abstract

Pain is a complex experience consisting of sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Now it has been gradually known that noxious information is processed by a widely-distributed, hierarchically-interconnected neural network, referred to as neuromatrix, in the brain. Thus, identifying the multiple neural networks subserving these functional aspects and harnessing this knowledge to manipulate the pain response in new and beneficial ways are challenging tasks. Albeit with elaborate research efforts on the cortical responses to painful stimuli or clinical pain, involvement of the hippocampal formation (HF) in pain is still a matter of controversy. Here, we integrate previous animal and human studies from the viewpoint of HF and pain, sequentially representing anatomical, behavioral, electrophysiological, molecular/biochemical and functional imaging evidence supporting the role of HF in pain processing. At last, we further expound on the relationship between pain and memory and present some unresolved issues.

Keywords: pain, hippocampal formation, anatomy, behavior, electrophysiology, functional imaging

References

  • [1].Melzack R., Casey K.L. Sensory, motivational, and central control determinants of pain. In: Kenshalo D.R., editor. The skin senses. Springfield (IL): Charles C. Thomas; 1968. pp. 423–439. [Google Scholar]
  • [2].Price D.D. Psychological mechanisms of pain and analgesia. Seattle: IASP Press; 1999. [Google Scholar]
  • [3].Bushnell M.C., Apkarian A.V. Representation of pain in the brain. In: McMahon S.B., Koltzenburg M., editors. Wall and Melzack’s Textbook of Pain. 5. China: Elsevier Ltd., Churchill Livingstone; 2006. pp. 107–124. [Google Scholar]
  • [4].Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol. 2002;12:195–204. doi: 10.1016/S0959-4388(02)00313-6. [DOI] [PubMed] [Google Scholar]
  • [5].Willis W.D. Nociceptive pathways: anatomy and physiology of nociceptive ascending pathways. Philos Trans R Soc Lond B Bio Sci. 1985;308:253–268. doi: 10.1098/rstb.1985.0025. [DOI] [PubMed] [Google Scholar]
  • [6].Melzack R. Evaluation of the neuromatrix theory of pain. Pain Pract. 2005;5:85–94. doi: 10.1111/j.1533-2500.2005.05203.x. [DOI] [PubMed] [Google Scholar]
  • [7].Melzack R. The future of pain. Nat Rev Drug Discov. 2008;7:629. doi: 10.1038/nrd2640. [DOI] [PubMed] [Google Scholar]
  • [8].Dick B.D., Rashiq S. Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg. 2007;104:1223–1229. doi: 10.1213/01.ane.0000263280.49786.f5. [DOI] [PubMed] [Google Scholar]
  • [9].Fishbain D.A., Cutler R., Rosomoff H.L., Rosomoff R.S. Chronic pain-associated depression: antecedent or consequence chronic pain? A review. Clin J Pain. 1997;13:116–137. doi: 10.1097/00002508-199706000-00006. [DOI] [PubMed] [Google Scholar]
  • [10].Ling J., Campbell C., Heffernan T.M., Greenough C.G. Short-term prospective memory deficits in chronic back pain patients. Psychosom Med. 2007;69:144–148. doi: 10.1097/PSY.0b013e31802e0f22. [DOI] [PubMed] [Google Scholar]
  • [11].Narita M., Kaneko C., Miyoshi K., Nagumo Y., Kuzumaki N., Nakajima M., et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology. 2006;31:739–750. doi: 10.1038/sj.npp.1300858. [DOI] [PubMed] [Google Scholar]
  • [12].Zhao XY, Liu MG, Yuan DL, Wang Y, Zhang FK, Chen XF et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009 (in press). [DOI] [PMC free article] [PubMed]
  • [13].Casey K.L. The imaging of pain: background and rationale. In: Casey K.L., Bushnell M.C., editors. Pain imaging. Seattle: IASP Press; 2000. pp. 1–29. [Google Scholar]
  • [14].Talbot J.D., Marrett S., Evans A.C., Meyer E., Bushnell M.C., Duncan G.H. Multiple representations of pain in human cerebral cortex. Science. 1991;251:1355–1358. doi: 10.1126/science.2003220. [DOI] [PubMed] [Google Scholar]
  • [15].Tracey I., Mantyh P.W. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–391. doi: 10.1016/j.neuron.2007.07.012. [DOI] [PubMed] [Google Scholar]
  • [16].Treede R.D., Kenshal D.R., Gracely R.H., Jones A.K.P. The cortical representation of pain. Pain. 1999;79:105–111. doi: 10.1016/S0304-3959(98)00184-5. [DOI] [PubMed] [Google Scholar]
  • [17].Duvernoy H.M. The Human Hippocampus. Berlin: Springer-Verlag; 2005. [Google Scholar]
  • [18].Papez J.W. A proposed mechanism of emotion. Arch Neurol Psychiat. 1937;38:725–744. [Google Scholar]
  • [19].Aloisi A.M., Casamenti F., Scali C., Pepeu G., Carli G. Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res. 1997;748:219–226. doi: 10.1016/S0006-8993(96)01304-2. [DOI] [PubMed] [Google Scholar]
  • [20].Bird C.M., Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9:182–194. doi: 10.1038/nrn2335. [DOI] [PubMed] [Google Scholar]
  • [21].Eichenbaum H. Conscious awareness, memory and the hippocampus. Nat Neurosci. 1999;2:775–776. doi: 10.1038/12137. [DOI] [PubMed] [Google Scholar]
  • [22].Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1:41–50. doi: 10.1038/35036213. [DOI] [PubMed] [Google Scholar]
  • [23].Jaffard R., Meunier M. Role of the hippocampal formation in learning and memory. Hippocampus. 1993;3:203–217. [PubMed] [Google Scholar]
  • [24].Duric V., McCarson K.E. Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience. 2005;133:999–1006. doi: 10.1016/j.neuroscience.2005.04.002. [DOI] [PubMed] [Google Scholar]
  • [25].Duric V., McCarson K.E. Neurokinin-1 (NK-1) receptor and brainderived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain. 2007;3:32. doi: 10.1186/1744-8069-3-32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Oddie S.D., Bland B.H. Hippocampal formation theta activity and movement selection. Neurosci Biobehav Rev. 1998;22:221–231. doi: 10.1016/S0149-7634(97)00003-1. [DOI] [PubMed] [Google Scholar]
  • [27].Al Amin H.A., Atweh S.F., Jabbur S.J., Saade N.E. Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci. 2004;20:3027–3034. doi: 10.1111/j.1460-9568.2004.03762.x. [DOI] [PubMed] [Google Scholar]
  • [28].Echeverry M.B., Guimarães F.S., Del Bel E.A. Acute and delayed restraint stress-induced changes in nitric oxide producing neurons in limbic regions. Neuroscience. 2004;125:981–993. doi: 10.1016/j.neuroscience.2003.12.046. [DOI] [PubMed] [Google Scholar]
  • [29].Favaroni Mendes L.A., Menescal-de-Oliveira L. Role of cholinergic, opioidergic and GABAergic neurotransmission of the dorsal hippocampus in the modulation of nociception in guinea pigs. Life Sci. 2008;83:644–650. doi: 10.1016/j.lfs.2008.09.006. [DOI] [PubMed] [Google Scholar]
  • [30].Khanna S., Chang L.S., Jiang F., Koh H.C. Nociception-driven decreased induction of Fos protein in ventral hippocampus field CA1 of the rat. Brain Res. 2004;1004:167–176. doi: 10.1016/j.brainres.2004.01.026. [DOI] [PubMed] [Google Scholar]
  • [31].Lathe R. Hormones and the hippocampus. J Endocrinol. 2001;169:205–231. doi: 10.1677/joe.0.1690205. [DOI] [PubMed] [Google Scholar]
  • [32].McKenna J.E., Melzack R. Analgesia produced by lidocaine microinjection into the dentate gyrus. Pain. 1992;49:105–112. doi: 10.1016/0304-3959(92)90195-H. [DOI] [PubMed] [Google Scholar]
  • [33].McKenna J.E., Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol. 2001;172:92–99. doi: 10.1006/exnr.2001.7777. [DOI] [PubMed] [Google Scholar]
  • [34].Soleimannejad E., Naghdi N., Semnanian S., Fathollahi Y., Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol. 2007;562:39–46. doi: 10.1016/j.ejphar.2006.11.051. [DOI] [PubMed] [Google Scholar]
  • [35].Soleimannejad E., Semnanian S., Fathollahi Y., Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res. 2006;168:221–225. doi: 10.1016/j.bbr.2005.11.011. [DOI] [PubMed] [Google Scholar]
  • [36].Yamamotov’a A., Franìk M., Vaculín, Št’astny’ F., Bubeníkov’a-Valešov’a V., Rokyta R. Different transfer of nociceptive sensitivity from rats with postnatal hippocampal lesions to control rats. Eur J Neurosci. 2007;26:446–450. doi: 10.1111/j.1460-9568.2007.05666.x. [DOI] [PubMed] [Google Scholar]
  • [37].Teyler T.J., DiScenna P. The topological anatomy of the hippocampus. Brain Res Bull. 1984;12:711–719. doi: 10.1016/0361-9230(84)90152-7. [DOI] [PubMed] [Google Scholar]
  • [38].van Strien N.M., Cappaert N.L.M., Witter M.P. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci. 2009;10:272–282. doi: 10.1038/nrn2614. [DOI] [PubMed] [Google Scholar]
  • [39].Amaral D.G., Witter M.P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience. 1989;31:571–591. doi: 10.1016/0306-4522(89)90424-7. [DOI] [PubMed] [Google Scholar]
  • [40].Amaral D.G., Lavenex P. The Hippocampus Book. New York: Oxford Univ Press; 2007. [Google Scholar]
  • [41].Jones R.S.G. Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci. 1993;16:58–64. doi: 10.1016/0166-2236(93)90018-H. [DOI] [PubMed] [Google Scholar]
  • [42].Wyss J.M. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat. J Comp Neurol. 1981;199:495–512. doi: 10.1002/cne.901990405. [DOI] [PubMed] [Google Scholar]
  • [43].Cajal S.R. The structure of Ammon’s Horn (trans. L Kraft) Springfield, MA: CC Thomas; 1968. [Google Scholar]
  • [44].Dolorfo C.L., Amaral D.G. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol. 1998;398:25–48. doi: 10.1002/(SICI)1096-9861(19980817)398:1<25::AID-CNE3>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  • [45].Witter M.P., Groenewegen H.J., Lopes da Silva F.H., Lohman A.H. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol. 1989;33:161–253. doi: 10.1016/0301-0082(89)90009-9. [DOI] [PubMed] [Google Scholar]
  • [46].Kohler C. A projection from the deep layers of the entorhinal area to the hippocampal formation in the rat brain. Neurosci Lett. 1985;56:13–19. doi: 10.1016/0304-3940(85)90433-1. [DOI] [PubMed] [Google Scholar]
  • [47].Witter M.P., Griffioen A.W., Jorritsma-Byham B., Krijnen J.L. Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway. Neurosci Lett. 1988;85:193–198. doi: 10.1016/0304-3940(88)90350-3. [DOI] [PubMed] [Google Scholar]
  • [48].Hjorth-Simonsen A., Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol. 1972;144:215–232. doi: 10.1002/cne.901440206. [DOI] [PubMed] [Google Scholar]
  • [49].Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol. 1976;167:285–314. doi: 10.1002/cne.901670303. [DOI] [PubMed] [Google Scholar]
  • [50].Steward O., Scoville S.A. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol. 1976;169:347–370. doi: 10.1002/cne.901690306. [DOI] [PubMed] [Google Scholar]
  • [51].Colbert C.M., Levy W.B. Electrophysiological and pharmacological characterization of perforant path synapses in CA1 mediation by glutamate receptors. J Neurophysiol. 1992;68:1–8. doi: 10.1152/jn.1992.68.1.1. [DOI] [PubMed] [Google Scholar]
  • [52].Doller H.J., Weight F.F. Perforant pathway activation of hippocampal CA1 stratum pyramidale neurons: electrophysiological evidence for a direct pathway. Brain Res. 1982;237:1–13. doi: 10.1016/0006-8993(82)90553-4. [DOI] [PubMed] [Google Scholar]
  • [53].Empson R.M., Heinemann U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol. 1995;484:707–720. doi: 10.1113/jphysiol.1995.sp020697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [54].Lømo T. Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation. Exp Brain Res. 1971;12:18–45. [PubMed] [Google Scholar]
  • [55].Yeckel M.F., Berger T.W. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci. 1990;87:5832–5836. doi: 10.1073/pnas.87.15.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Khanna S. Dorsal hippocampus field CA1 pyramidal cell responses to a persistent versus an acute nociceptive stimulus and their septal modulation. Neuroscience. 1997;77:713–721. doi: 10.1016/S0306-4522(96)00456-3. [DOI] [PubMed] [Google Scholar]
  • [57].Zheng F., Khanna S. Selective destruction of medial septal cholinergic neurons attenuates pyramidal cell suppression, but not excitation in dorsal hippocampus field CA1 induced by subcutaneous injection of formalin. Neuroscience. 2001;103:985–998. doi: 10.1016/S0306-4522(01)00006-9. [DOI] [PubMed] [Google Scholar]
  • [58].Zheng F., Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull. 2008;77:374–381. doi: 10.1016/j.brainresbull.2008.09.004. [DOI] [PubMed] [Google Scholar]
  • [59].Henke P.G. The telencephalic limbic system and experimental gastric pathology: a review. Neurosci Biobehav Rev. 1982;6:381–390. doi: 10.1016/0149-7634(82)90047-1. [DOI] [PubMed] [Google Scholar]
  • [60].Domesick V.B. The fasciculus cinguli in the rat. Brain Res. 1970;20:19–32. doi: 10.1016/0006-8993(70)90150-2. [DOI] [PubMed] [Google Scholar]
  • [61].Pandya J. The connections of the cingulate gyrus. Exp Brain Res. 1981;42:319–330. doi: 10.1007/BF00237497. [DOI] [PubMed] [Google Scholar]
  • [62].Foltz E.L., White L.E. Pain “relief” by frontal cingulumotomy. J Neurosurg. 1962;19:89–100. doi: 10.3171/jns.1962.19.2.0089. [DOI] [PubMed] [Google Scholar]
  • [63].Vaccarino A.L., Melzack R. Temporal processes of formalin pain: differential role of the cingulum bundle, fornix pathway and medial bulboreticular formation. Pain. 1992;49:257–271. doi: 10.1016/0304-3959(92)90150-A. [DOI] [PubMed] [Google Scholar]
  • [64].Friedman D.P., Murray E.A., O’Neill J.B., Mishkin M. Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol. 1986;252:323–347. doi: 10.1002/cne.902520304. [DOI] [PubMed] [Google Scholar]
  • [65].Mesulam M.M., Mufson E.J. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol. 1982;212:38–52. doi: 10.1002/cne.902120104. [DOI] [PubMed] [Google Scholar]
  • [66].Klossika I., Flor H., Kamping S., Bleichhardt G., Trautmann N., Treede R.D., et al. Emotional modulation of pain: a clinical perspective. Pain. 2006;124:264–268. doi: 10.1016/j.pain.2006.08.007. [DOI] [PubMed] [Google Scholar]
  • [67].Price D.D. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–1772. doi: 10.1126/science.288.5472.1769. [DOI] [PubMed] [Google Scholar]
  • [68].Amaral D.G., Kurz J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol. 1985;240:37–59. doi: 10.1002/cne.902400104. [DOI] [PubMed] [Google Scholar]
  • [69].Dutar P., Bassant M.H., Senut M.C., Lamour Y. The septohippocampal pathway: structure and function of a central system. Physiol Rev. 1995;75:393–427. doi: 10.1152/physrev.1995.75.2.393. [DOI] [PubMed] [Google Scholar]
  • [70].Fibiger H.C. The organization and projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev. 1982;257:327–388. doi: 10.1016/0165-0173(82)90011-X. [DOI] [PubMed] [Google Scholar]
  • [71].Fonnum F., Walaas I. The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in the hippocampus and septum. J Neurochem. 1978;31:1173–1181. doi: 10.1111/j.1471-4159.1978.tb06241.x. [DOI] [PubMed] [Google Scholar]
  • [72].Aloisi A.M. Sex differences in pain-induced effects on the septohippocampal system. Brain Res Rev. 1997;25:397–406. doi: 10.1016/S0165-0173(97)00030-1. [DOI] [PubMed] [Google Scholar]
  • [73].Swanson L.W., Cowan W.M. The connections of the septal region in the rat. J Comp Neurol. 1979;186:621–656. doi: 10.1002/cne.901860408. [DOI] [PubMed] [Google Scholar]
  • [74].Dutar P., Lamour Y., Jobert A. Activation of identified septohippocampal neurons by noxious peripheral stimulation. Brain Res. 1985;328:15–21. doi: 10.1016/0006-8993(85)91317-4. [DOI] [PubMed] [Google Scholar]
  • [75].Khanna S., Sinclair J.G. Responses in the CA1 region of the rat hippocampus to a noxious stimulus. Exp Neurol. 1992;117:28–35. doi: 10.1016/0014-4886(92)90107-2. [DOI] [PubMed] [Google Scholar]
  • [76].Meibach R.C., Siegel A. Efferent connections of the hippocampal formation in the rat. Brain Res. 1977;124:197–224. doi: 10.1016/0006-8993(77)90880-0. [DOI] [PubMed] [Google Scholar]
  • [77].Powell E.W., Hines G. Septohippocampal interface. In: Isaacson R.L., Pribram K.H., editors. The Hippocampus. New York: Plenum; 1975. [Google Scholar]
  • [78].Siegel A., Ohgami S., Edinger H. Projections of the hippocampus to the septal area in the squirrel monkey. Brain Res. 1975;99:247–260. doi: 10.1016/0006-8993(75)90027-X. [DOI] [PubMed] [Google Scholar]
  • [79].Hjorth-Simonsen A. Hippocampal efferents to the ipsilateral entorhinal area: an experimental study in the rat. J Comp Neurol. 1971;142:417–437. doi: 10.1002/cne.901420403. [DOI] [PubMed] [Google Scholar]
  • [80].Swanson L.W., Cowan W.M. An audioradographic study of the organization of efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;172:48–84. doi: 10.1002/cne.901720104. [DOI] [PubMed] [Google Scholar]
  • [81].Lico M.C., Hoffmann A., Covian M.R. Influence of some limbic structures upon somatic and autonomic manifestations of pain. Physiol Behav. 1974;12:805–811. doi: 10.1016/0031-9384(74)90017-1. [DOI] [PubMed] [Google Scholar]
  • [82].Prado W.A., Roberts H.T. An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res. 1985;340:219–238. doi: 10.1016/0006-8993(85)90917-5. [DOI] [PubMed] [Google Scholar]
  • [83].Yeung J.C., Yaksh T.L., Rudy T.A. Concurrent mapping of brain sites for sensitivity to the direct application of morphine and focal electrical stimulation in the production of antinociception in the rat. Pain. 1977;4:23–40. doi: 10.1016/0304-3959(77)90084-7. [DOI] [PubMed] [Google Scholar]
  • [84].Sinha R., Sharma R., Mathur R., Nayar U. Hypothalamo-limbic involvement in modulation of tooth-pump stimulation evoked nociceptive response in rats. Indian J Physiol Pharmacol. 1999;43:323–331. [PubMed] [Google Scholar]
  • [85].MacLean P.D., Delgado J.M.R. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroenceph Clin Neurophysiol. 1953;5:91–100. doi: 10.1016/0013-4694(53)90056-X. [DOI] [PubMed] [Google Scholar]
  • [86].Abbott F.V., Melzack R. Analgesia produced by stimulation of limbic structures and its relation to epileptiform after-discharges. Exp Neurol. 1978;62:720–734. doi: 10.1016/0014-4886(78)90280-7. [DOI] [PubMed] [Google Scholar]
  • [87].Delgado J.M. Cerebral structures involved in transmission and elaboration of noxious stimulation. J Neurophysiol. 1955;18:261–275. doi: 10.1152/jn.1955.18.3.261. [DOI] [PubMed] [Google Scholar]
  • [88].Halgren E., Walter R.D., Cherlow D.G., Crandall P.H. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain. 1978;101:83–117. doi: 10.1093/brain/101.1.83. [DOI] [PubMed] [Google Scholar]
  • [89].Jackson W.J., Regestein Q.R. Hippocampal lesions impair prolonged titrated avoidance by rhesus monkey. Exp Neurol. 1979;63:28–34. doi: 10.1016/0014-4886(79)90183-3. [DOI] [PubMed] [Google Scholar]
  • [90].Gol A., Kellaway P., Shapiro M., Hurst C.M. Studies of hippocampectomy in the monkey, baboon and cat. Behavioral changes and a preliminary evaluation of cognitive functions. Neurology. 1963;13:1031–1041. doi: 10.1212/wnl.13.12.1031. [DOI] [PubMed] [Google Scholar]
  • [91].Schreiner L., Kling A. Behavioral changes following rhinocephalic injury in the cat. J Neurophysiol. 1953;16:643–659. doi: 10.1152/jn.1953.16.6.643. [DOI] [PubMed] [Google Scholar]
  • [92].Teitelbaum H., Milner P. Activity changes following partial hippocampal lesions in rats. J Comp Physiol Psychol. 1963;56:284–289. doi: 10.1037/h0047052. [DOI] [PubMed] [Google Scholar]
  • [93].Blanchard R.J., Fial R. Effects of limbic lesions on passive avoidance and reactivity to shock. J Comp Physiol Psychol. 1968;66:606–612. doi: 10.1037/h0026512. [DOI] [PubMed] [Google Scholar]
  • [94].Eichelman B.S. Effect of subcortical lesions on shock-induced aggression in the rat. J Comp Physiol Psychol. 1971;74:331–339. doi: 10.1037/h0030559. [DOI] [PubMed] [Google Scholar]
  • [95].Kimble D.P. The effects of bilateral hippocampal lesions in rats. J Comp Physiol Psychol. 1963;56:273–283. doi: 10.1037/h0048903. [DOI] [PubMed] [Google Scholar]
  • [96].Roberts W.W., Dember W.N., Brodwick M. Alteration and exploration in rats with hippocampal lesions. J Comp Physiol Psychol. 1962;55:695–700. doi: 10.1037/h0045168. [DOI] [PubMed] [Google Scholar]
  • [97].Blanchard R.J., Blanchard D.C. Limbic lesions and reflexive fighting. J Comp Physiol Psychol. 1968;66:603–605. doi: 10.1037/h0026511. [DOI] [PubMed] [Google Scholar]
  • [98].McCleary R.A. Response specificity in the behavioral effects of limbic system lesions in the cat. J Comp Physiol Psychol. 1961;54:605–613. doi: 10.1037/h0044019. [DOI] [Google Scholar]
  • [99].Olton D.S., Isaacson R.L. Importance of spatial location in active avoidance tasks. J Comp Physiol Psychol. 1968;65:535–539. doi: 10.1037/h0025830. [DOI] [PubMed] [Google Scholar]
  • [100].Douglas R.J. The hippocampus and behavior. Psychol Bull. 1967;67:416–442. doi: 10.1037/h0024599. [DOI] [PubMed] [Google Scholar]
  • [101].Olton D.S., Isaacson R.L. Hippocampal lesions and active avoidance. Physiol Behav. 1968;3:719–724. doi: 10.1016/0031-9384(68)90142-X. [DOI] [Google Scholar]
  • [102].Nadel L. Dorsal and ventral hippocampal lesions and behavior. Physiol Behav. 1968;3:891–900. doi: 10.1016/0031-9384(68)90174-1. [DOI] [Google Scholar]
  • [103].Segal M., Landis S. Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res. 1974;87:1–15. doi: 10.1016/0006-8993(74)90349-7. [DOI] [PubMed] [Google Scholar]
  • [104].Elul R. Regional differences in the hippocampus of the cat. I. Specific discharge patterns of the dorsal and ventral hippocampus and their role in generalized seizures. Electroenceph Clin Neurophysiol. 1964;16:470–488. doi: 10.1016/0013-4694(64)90089-6. [DOI] [PubMed] [Google Scholar]
  • [105].Andy O.J., Peeler D.F., Jr, Foshee D.P. Avoidance and discrimination learning following hippocampal ablation in the cat. J Comp Physiol Psychol. 1967;64:516–519. doi: 10.1037/h0025193. [DOI] [PubMed] [Google Scholar]
  • [106].Wood G., Marcotte E.R., Quirion R., Srivastava L. Strain differences in the behavioural outcome of neonatal ventral hippocampal lesions are determined by postnatal environment and not genetic factors. Eur J Neurosci. 2001;14:1030–1034. doi: 10.1046/j.0953-816x.2001.01716.x. [DOI] [PubMed] [Google Scholar]
  • [107].Gol A., Faibish G.M. Hippocampectomy for relief of intractable pain. Tex Med. 1966;62:76–79. [PubMed] [Google Scholar]
  • [108].Gol A., Faibish G.M. Effects of human hippocampal ablation. J Neurosurg. 1967;26:390–398. doi: 10.3171/jns.1967.26.4.0390. [DOI] [PubMed] [Google Scholar]
  • [109].Hebben N., Corkin S., Eichenbaum H., Shedlack K. Diminished ability to interpret and report internal states after bilateral medial temporal resection: case H.M. Behav Neurosci. 1985;99:1031–1039. doi: 10.1037/0735-7044.99.6.1031. [DOI] [PubMed] [Google Scholar]
  • [110].Corkin S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Sem Neurol. 1984;4:249–259. doi: 10.1055/s-2008-1041556. [DOI] [Google Scholar]
  • [111].Aloisi A.M., Ceccarelli I., Cavallaro K., Scaramuzzino A. 192 IgGsaporin induced selective cholinergic denervation modifies formalin pain in male rats. Analgesia. 2002;6:19–25. [Google Scholar]
  • [112].Bartolini A., Ghelardini C., Fantetti L., Malcangio M., Malmberg-Aiello P., Giotti A. Role of muscarinic receptor subtypes in central antinociception. Br J Pharmacol. 1992;105:77–82. doi: 10.1111/j.1476-5381.1992.tb14213.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [113].Green P.G., Kitchen I. Antinociception opioids and the cholinergic system. Prog Neurobiol. 1986;26:119–146. doi: 10.1016/0301-0082(86)90002-X. [DOI] [PubMed] [Google Scholar]
  • [114].Levey A.I., Edmunds S.M., Koliatsos V., Wiley R.G., Heilman C.J. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995;15:4077–4092. doi: 10.1523/JNEUROSCI.15-05-04077.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [115].Woolf N.J., Eckenstein F., Butcher L.L. Cholinergic systems in the rat brain: I. Projections to the limbic telencephalon. Brain Res Bull. 1984;13:751–784. doi: 10.1016/0361-9230(84)90236-3. [DOI] [PubMed] [Google Scholar]
  • [116].Acsady L., Halasy K., Freund T.F. Calretinin is present in nonpyramidal cells of the rat hippocampus. III. Their inputs from the median raphe and medial septal nuclei. Neuroscience. 1993;52:829–841. doi: 10.1016/0306-4522(93)90532-K. [DOI] [PubMed] [Google Scholar]
  • [117].Moore R.Y., Halaris A.E. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol. 1975;164:171–184. doi: 10.1002/cne.901640203. [DOI] [PubMed] [Google Scholar]
  • [118].Obata H., Saito S., Ishizaki K., Goto F. Antinociception in rat by sarpogrelate, a selective 5-HT2A receptor antagonist, is peripheral. Eur J Pharmacol. 2000;404:95–102. doi: 10.1016/S0014-2999(00)00522-7. [DOI] [PubMed] [Google Scholar]
  • [119].Wei H., Pertovaara A. 5-HT1A receptors in endogenous regulation of neuropathic hypersensitivity in the rat. Eur J Pharmacol. 2006;535:157–165. doi: 10.1016/j.ejphar.2006.02.019. [DOI] [PubMed] [Google Scholar]
  • [120].Kal’en P., Rosegren E., Lindvall O., Björklund A. Hippocampal noradrenaline and serotonin release over 24 Hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail-pinch. Eur J Neurosci. 1989;1:181–188. doi: 10.1111/j.1460-9568.1989.tb00786.x. [DOI] [PubMed] [Google Scholar]
  • [121].Glavin G.B. Stress and brain noradrenaline: a review. Neurosci Biobehav Rev. 1985;9:233–243. doi: 10.1016/0149-7634(85)90048-X. [DOI] [PubMed] [Google Scholar]
  • [122].Abercrombie E.D., Keller R.W., Zigmond M.J. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience. 1988;3:897–904. doi: 10.1016/0306-4522(88)90192-3. [DOI] [PubMed] [Google Scholar]
  • [123].Compton D.M., Dietrich K.L., Smith J.S., Davis B.K. Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus. NeuroReport. 1995;7:177–182. [PubMed] [Google Scholar]
  • [124].Rosario L.A., Abercrombie E.D. Individual differences in behavioral reactivity correlation with stress-induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res Bull. 1999;48:595–602. doi: 10.1016/S0361-9230(99)00040-4. [DOI] [PubMed] [Google Scholar]
  • [125].Samanin R., Garattini S. The serotonergic system in the brain and its possible functional connections with aminergic systems. Life Sci. 1975;17:1201–1210. doi: 10.1016/0024-3205(75)90128-9. [DOI] [PubMed] [Google Scholar]
  • [126].Gage F.H., Springer J.E. Behavioral assessment of norepinephrine and serotonin function and interaction in the hippocampal formation. Pharmacol Biochem Behav. 1981;14:815–821. doi: 10.1016/0091-3057(81)90366-X. [DOI] [PubMed] [Google Scholar]
  • [127].Spinella M., Bodnar R.J. Nitric oxide synthase inhibition selectively potentiates swim stress antinociception in rats. Pharmacol Biochem Behav. 1994;47:727–733. doi: 10.1016/0091-3057(94)90180-5. [DOI] [PubMed] [Google Scholar]
  • [128].Haley J.E., Dickenson A.H., Schachter M. Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology. 1992;31:251–258. doi: 10.1016/0028-3908(92)90175-O. [DOI] [PubMed] [Google Scholar]
  • [129].Meller S.T., Cumming C.P., Traub R.J., Gebhart G.F. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience. 1994;60:367–374. doi: 10.1016/0306-4522(94)90250-X. [DOI] [PubMed] [Google Scholar]
  • [130].Echeverry M.B., Guimarães F.S., Oliveira M.A., do Prado W.A., Del Bel E.A. Delayed stress-induced antinociceptive effect of nitric oxide synthase inhibition in the dentate gyrus of rats. Pharmacol Biochem Behav. 2002;74:149–156. doi: 10.1016/S0091-3057(02)00964-4. [DOI] [PubMed] [Google Scholar]
  • [131].Vane J.R., Bakhl Y.S., Botting R.M. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi: 10.1146/annurev.pharmtox.38.1.97. [DOI] [PubMed] [Google Scholar]
  • [132].Teather L.A., Magnusson J.E., Wurtman R.J. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats. Psychopharmacology. 2002;163:430–433. doi: 10.1007/s00213-002-1039-9. [DOI] [PubMed] [Google Scholar]
  • [133].Marcheselli V.L., Rossowska M.J., Domingo M.T., Braquet P., Bazan N.G. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990;265:9140–9145. [PubMed] [Google Scholar]
  • [134].Teather L.A., Afonso V.M., Wurtman R.J. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res. 2006;1097:230–233. doi: 10.1016/j.brainres.2006.03.036. [DOI] [PubMed] [Google Scholar]
  • [135].Besson J., Sarrieau A., Vial M., Marie J.C., Rosselin G., Rostene W. Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res. 1986;398:329–336. doi: 10.1016/0006-8993(86)91493-9. [DOI] [PubMed] [Google Scholar]
  • [136].Aton S.J., Colwell C.S., Harmar A.J., Waschek J., Herzog E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8:476–483. doi: 10.1038/nn1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [137].Acs’ady L., Arabadzisz D., Freund T.F. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide immunoreactive interneurons in the rat hippocampus. Neuroscience. 1996;73:299–315. doi: 10.1016/0306-4522(95)00610-9. [DOI] [PubMed] [Google Scholar]
  • [138].Ishihara T., Shigemoto R., Mori K., Takahashi K., Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron. 1992;8:811–819. doi: 10.1016/0896-6273(92)90101-I. [DOI] [PubMed] [Google Scholar]
  • [139].Macsai M., Szabo G., Telegdy G. Vasoactive intestinal polypeptide induces analgesia and impairs the antinociceptive effect of morphine in mice. Neuropeptides. 1998;32:557–562. doi: 10.1016/S0143-4179(98)90085-3. [DOI] [PubMed] [Google Scholar]
  • [140].Ternianov A., Kalfin R., Belcheva I. Antinociceptive effect of vasoactive intestinal peptide (VIP) microinjected into the rats CA1 hippocampal area. C R Acad Bulg Sci. 2001;54:95–96. [Google Scholar]
  • [141].Belcheva I, Ivanova M, Tashev R, Belcheva S. Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. 2009, Peptides (in press). [DOI] [PubMed]
  • [142].Soulairac A., Gottesmann C.L., Charpentier J. Effects of pain and of several analgesics on cortex, hippocampus and reticular formation of brain stem. Int J Neuropharmacol. 1967;6:71–81. doi: 10.1016/0028-3908(67)90055-X. [DOI] [Google Scholar]
  • [143].Sinnamon H.M., Schwartzbaum J.S. Dorsal hippocampal unit and EEG responses to rewarding and aversive brain stimulation in rats. Brain Res. 1973;56:183–202. doi: 10.1016/0006-8993(73)90334-X. [DOI] [PubMed] [Google Scholar]
  • [144].Archer D.P., Roth S.H. Pharmacodynamics of thiopentone: nocifensive reflex threshold changes correlate with hippocampal electroencephalography. Br J Anaesth. 1997;79:744–749. doi: 10.1093/bja/79.6.744. [DOI] [PubMed] [Google Scholar]
  • [145].Heale V.R., Vanderwolf C.H. Dentate gyrus and olfactory bulb responses to olfactory and noxious stimulation in urethane anaesthetized rats. Brain Res. 1994;652:235–242. doi: 10.1016/0006-8993(94)90232-1. [DOI] [PubMed] [Google Scholar]
  • [146].Sinclair J.G., Lo G.F. Morphine, but not atropine, blocks nociceptor-driven activity in rat dorsal hippocampal neurones. Neurosci Lett. 1986;68:47–50. doi: 10.1016/0304-3940(86)90227-2. [DOI] [PubMed] [Google Scholar]
  • [147].Yang X.F., Xiao Y., Xu M.Y. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm. 2008;115:1–6. doi: 10.1007/s00702-007-0808-3. [DOI] [PubMed] [Google Scholar]
  • [148].Ben-Ari Y., Krnjević K., Reinhardt W., Ropert N. Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience. 1981;6:2475–2484. doi: 10.1016/0306-4522(81)90093-2. [DOI] [PubMed] [Google Scholar]
  • [149].Krnjeviæ K., Ropert N. Electrophysiological and pharmacological characteristics and facilitation of hippocampal population spikes by stimulation of the medial septum. Neuroscience. 1982;7:2165–2183. doi: 10.1016/0306-4522(82)90128-2. [DOI] [PubMed] [Google Scholar]
  • [150].Khanna S., Sinclair J.G. Noxious stimuli produce prolonged changes in the CA1 region of rat hippocampus. Pain. 1989;39:337–343. doi: 10.1016/0304-3959(89)90047-X. [DOI] [PubMed] [Google Scholar]
  • [151].Leung L.S., Yim C.Y. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res. 1986;367:323–327. doi: 10.1016/0006-8993(86)91611-2. [DOI] [PubMed] [Google Scholar]
  • [152].Ylinen A., Soltesz I., Bragin A., Penttonen M., Sik A., Buzsaki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells and basket cells. Hippocampus. 1995;5:78–90. doi: 10.1002/hipo.450050110. [DOI] [PubMed] [Google Scholar]
  • [153].Zheng F., Khanna S. Hippocampal field CA1 interneuronal nociceptive respionses modulation by medial septal region and morphine. Neuroscience. 1999;93:45–55. doi: 10.1016/S0306-4522(99)00119-0. [DOI] [PubMed] [Google Scholar]
  • [154].Khanna S., Zheng F. Morphine reversed formalin-induced CA1 pyramidal cell suppression via an effect on septohippocampal neural processing. Neuroscience. 1999;89:61–71. doi: 10.1016/S0306-4522(98)00324-8. [DOI] [PubMed] [Google Scholar]
  • [155].Miller S.N., Groves P.M. Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei. Physiol Behav. 1977;18:141–146. doi: 10.1016/0031-9384(77)90106-8. [DOI] [PubMed] [Google Scholar]
  • [156].Bland B.H. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol. 1986;26:1–54. doi: 10.1016/0301-0082(86)90019-5. [DOI] [PubMed] [Google Scholar]
  • [157].Behrends J.C., Ten Bruggencate G. Cholinergic modulation of synaptic inhibition in the guinea pig hippocampus in vitro: excitation of GABA-ergic interneurons and inhibition of GABArelease. J Neurophysiol. 1993;69:626–629. doi: 10.1152/jn.1993.69.2.626. [DOI] [PubMed] [Google Scholar]
  • [158].Khanna S. Nociceptive processing in the hippocampus and entorhinal cortex, neurophysiology and pharmacology. In: Schmidt R.F., Willis W.D., editors. Encyclopedia of Pain. Berlin: Springer-Verlag; 2007. pp. 1369–1374. [Google Scholar]
  • [159].Mody I., Pearce R.A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 2004;27:569–575. doi: 10.1016/j.tins.2004.07.002. [DOI] [PubMed] [Google Scholar]
  • [160].Tai S.K., Huang F.D., Moochhala S., Khanna S. Hippocampal theta state in relation to formalin nociception. Pain. 2006;121:29–42. doi: 10.1016/j.pain.2005.11.016. [DOI] [PubMed] [Google Scholar]
  • [161].Ko S., Zhuo M. Central plasticity and persistent pain. Drug Discov Today. 2004;1:101–106. [Google Scholar]
  • [162].Woolf C.J., Salter M.W. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–1768. doi: 10.1126/science.288.5472.1765. [DOI] [PubMed] [Google Scholar]
  • [163].Zhuo M. Targeting central plasticity: a new direction of finding painkillers. Curr Pharm Des. 2005;11:2797–2807. doi: 10.2174/1381612054546798. [DOI] [PubMed] [Google Scholar]
  • [164].Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31:199–207. doi: 10.1016/j.tins.2008.01.003. [DOI] [PubMed] [Google Scholar]
  • [165].Wei F., Xu Z.C., Qu Z., Milbrandt J., Zhuo M. Role of EGR1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J Cell Biol. 2000;149:1325–1333. doi: 10.1083/jcb.149.7.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [166].Chen J. The bee venom test: a novel useful animal model for study of spinal coding and processing of pathological pain information. In: Chen J., Chen C.A.N., Han J.S., Willis W.D., editors. Experimental Pathological Pain: from Molecules to Brain Function. Beijing: Science Press; 2003. pp. 77–110. [Google Scholar]
  • [167].Chen J. Processing of different ‘phenotypes’ of pain by different spinal signaling pathways. In: Kumamoto K., editor. Cellular and molecular mechanisms for the modulation of nociceptive transmission in the peripheral and central nervous system. Kerala: Research SignPost; 2007. pp. 147–165. [Google Scholar]
  • [168].Chen J., Luo C., Li H.L., Chen H.S. Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain. 1999;83:67–76. doi: 10.1016/S0304-3959(99)00075-5. [DOI] [PubMed] [Google Scholar]
  • [169].Chen Y.N., Li K.C., Li Z., Shang G.W., Liu D.N., Lu Z.M., et al. Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience. 2006;138:631–640. doi: 10.1016/j.neuroscience.2005.11.022. [DOI] [PubMed] [Google Scholar]
  • [170].Chen H.S., Chen J. Secondary heat, but not mechanical, hyperalgesia induced by subcutaneous injection of bee venom in the conscious rat: effect of systemic MK-801, a non-competitive NMDA receptor antagonist. Eur J Pain. 2000;4:389–401. doi: 10.1053/eujp.2000.0197. [DOI] [PubMed] [Google Scholar]
  • [171].Lariviere W.R., Melzack R. The bee venom test: a new tonic-pain test. Pain. 1996;66:271–277. doi: 10.1016/0304-3959(96)03075-8. [DOI] [PubMed] [Google Scholar]
  • [172].Pennypacker K.R., Hong J.S., McMillian M.K. Implications of prolonged expression of Fos-related antigens. Trends Pharmacol Sci. 1995;16:317–321. doi: 10.1016/S0165-6147(00)89061-6. [DOI] [PubMed] [Google Scholar]
  • [173].Zimmermann M., Herdegen T. Control of gene transcription by Jun and Fos proteins in the nervous system. Beneficial or harmful molecular mechanisms of neuronal responses to noxious stimulation? Am Pain Soc J. 1994;3:33–48. [Google Scholar]
  • [174].Chang Y., Yan L.H., Zhang F.K., Gong K.R., Liu M.G., Xiao Y., et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett. 2008;448:134–138. doi: 10.1016/j.neulet.2008.08.090. [DOI] [PubMed] [Google Scholar]
  • [175].Harris J.A. Using c-fos as a neural marker of pain. Brain Res Bull. 1998;45:1–8. doi: 10.1016/S0361-9230(97)00277-3. [DOI] [PubMed] [Google Scholar]
  • [176].Herrera D.G., Robertson H.A. Activation of c-fos in the brain. Prog Neurobiol. 1996;50:83–107. doi: 10.1016/S0301-0082(96)00021-4. [DOI] [PubMed] [Google Scholar]
  • [177].Aloisi A.M., Zimmermann M., Herdegen T. Sex-dependent effects of formalin and restraint on c-Fos expression in the septum and hippocampus of the rat. Neuroscience. 1997;81:951–958. doi: 10.1016/S0306-4522(97)00270-4. [DOI] [PubMed] [Google Scholar]
  • [178].Aloisi A.M., Ceccarelli I., Herdegen T. Gonadectomy and persistent pain differently affect hippocampal c-Fos expression in male and female rats. Neurosci Lett. 2000;281:29–32. doi: 10.1016/S0304-3940(00)00819-3. [DOI] [PubMed] [Google Scholar]
  • [179].Ceccarelli I., Scaramuzzino A., Aloisi A.M. Effects of formalin pain on hippocampal c-Fos expression in male and female rats. Pharmacol Biochem Behav. 1999;64:797–802. doi: 10.1016/S0091-3057(99)00145-8. [DOI] [PubMed] [Google Scholar]
  • [180].Pearse D., Mirza A., Leah J. Jun, Fos and Krox in the hippocampus after noxious stimulation: simultaneous-input-dependent expression and nuclear speckling. Brain Res. 2001;894:193–208. doi: 10.1016/S0006-8993(01)01993-X. [DOI] [PubMed] [Google Scholar]
  • [181].Funahashi M., He Y.F., Sugimoto T., Matsuo R. Noxious tooth pulp stimulation suppresses c-fos expression in the rat hippocampal formation. Brain Res. 1999;827:215–220. doi: 10.1016/S0006-8993(99)01250-0. [DOI] [PubMed] [Google Scholar]
  • [182].Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987;238:797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  • [183].Malcangio M., Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci. 2003;24:116–121. doi: 10.1016/S0165-6147(03)00025-7. [DOI] [PubMed] [Google Scholar]
  • [184].Vaught J.L. Substance P antagonists and analgesia: A review of the hypothesis. Life Sci. 1988;43:1419–1431. doi: 10.1016/0024-3205(88)90253-6. [DOI] [PubMed] [Google Scholar]
  • [185].Hunt S.P., Mantyh P.W. The molecular dynamics of pain control. Nat Rev Neurosci. 2001;2:83–91. doi: 10.1038/35053509. [DOI] [PubMed] [Google Scholar]
  • [186].McCarson K.E., Krause J.E. NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced nociception. J Neurosci. 1994;14:712–720. doi: 10.1523/JNEUROSCI.14-02-00712.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [187].Zhou X.F., Rush R.A. Endogenous brain-derived neurotrophic factor ical excitation and chronic pain. Neuroscience. 1996;74:945–953. doi: 10.1016/0306-4522(96)00237-0. [DOI] [PubMed] [Google Scholar]
  • [188].Kramer M.S., Cutler N., Feighner J., Shrivastava R., Carman J., Sramek J.J., et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281:1640–1645. doi: 10.1126/science.281.5383.1640. [DOI] [PubMed] [Google Scholar]
  • [189].McLean S. Do substance P and the NK1 receptor have a role in depression and anxiety? Curr Pharm Des. 2005;11:1529–1547. doi: 10.2174/1381612053764779. [DOI] [PubMed] [Google Scholar]
  • [190].Nibuya M., Morinobu S., Duman R.S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–7547. doi: 10.1523/JNEUROSCI.15-11-07539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [191].Watanabe Y., Gould E., McEwen B.S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588:341–345. doi: 10.1016/0006-8993(92)91597-8. [DOI] [PubMed] [Google Scholar]
  • [192].Gould E., Tanapat P., McEwen B.S., Flugge G., Fuchs E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A. 1998;95:3168–3171. doi: 10.1073/pnas.95.6.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [193].Kim J.J., Diamond D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3:453–462. doi: 10.1038/nrm832. [DOI] [PubMed] [Google Scholar]
  • [194].McEwen B.S. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–122. doi: 10.1146/annurev.neuro.22.1.105. [DOI] [PubMed] [Google Scholar]
  • [195].Duric V., McCarson K.E. Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat. J Pharmacol Exp Ther. 2006;319:1235–1243. doi: 10.1124/jpet.106.109470. [DOI] [PubMed] [Google Scholar]
  • [196].Duric V., McCarson K.E. Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain. 2006;7:544–555. doi: 10.1016/j.jpain.2006.01.458. [DOI] [PubMed] [Google Scholar]
  • [197].Gould E., Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46:1472–1479. doi: 10.1016/S0006-3223(99)00247-4. [DOI] [PubMed] [Google Scholar]
  • [198].Jalalvand E., Javan M., Haeri-Rohani A., Ahmadiani A. Stress- and non-stress-mediated mechanisms are involved in pain-induced apoptosis in hippocampus and dorsal lumbar spinal cord in rats. Neuroscience. 2008;157:446–452. doi: 10.1016/j.neuroscience.2008.08.052. [DOI] [PubMed] [Google Scholar]
  • [199].Widmann C., Gibson S., Jarpe M.B., Johnson G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–180. doi: 10.1152/physrev.1999.79.1.143. [DOI] [PubMed] [Google Scholar]
  • [200].Hodge C., Liao J., Slofega M., Guan K., Carter-Su C., Schwartz J. Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem. 1998;273:31327–31336. doi: 10.1074/jbc.273.47.31327. [DOI] [PubMed] [Google Scholar]
  • [201].Atkins C.M., Selcher J.C., Petraitis J.J., Trzaskos J.M., Sweatt J.D. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998;1:602–609. doi: 10.1038/2836. [DOI] [PubMed] [Google Scholar]
  • [202].Wang X., Martindale J.L., Liu Y., Holbrook N.J. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem J. 1998;333:230–291. doi: 10.1042/bj3330291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [203].Winder D.G., Martin K.C., Muzzio R.A., Rohrer D., Chruscinski A., Kobilka B., et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by β-adrenergic receptors. Neuron. 1999;24:715–726. doi: 10.1016/S0896-6273(00)81124-1. [DOI] [PubMed] [Google Scholar]
  • [204].Dai Y., Iwata K., Fukuoka T., Kondo E., Tokunaga A., Yamanaka H., et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci. 2002;22:7737–7745. doi: 10.1523/JNEUROSCI.22-17-07737.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [205].Ji R.R. Mitogen-activated protein kinases as potential targets for pain killers. Curr Opin Investig Drugs. 2004;5:71–75. [PubMed] [Google Scholar]
  • [206].Ji R.R., Baba H., Brenner G.J., Woolf C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci. 1999;2:1114–1119. doi: 10.1038/16040. [DOI] [PubMed] [Google Scholar]
  • [207].Ji R.R., Woolf C.J. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis. 2001;8:1–10. doi: 10.1006/nbdi.2000.0360. [DOI] [PubMed] [Google Scholar]
  • [208].Obata K., Yamanaka H., Tachibana T., Fukuoka T., Tokunaga A., Yoshikawa H., et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci. 2003;23:4117–4126. doi: 10.1523/JNEUROSCI.23-10-04117.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [209].Cao F.L., Liu M.G., Hao J., Li Z., Lu Z.M., Chen J. Different roles of spinal p38 and c-Jun N-terminal kinase pathways in bee venominduced multiple pain-related behaviors. Neurosci Lett. 2007;427:50–54. doi: 10.1016/j.neulet.2007.09.005. [DOI] [PubMed] [Google Scholar]
  • [210].Cui X.Y., Dai Y., Wang S.L., Yamanaka H., Kobayashi K., Obata K., et al. Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. Mol Pain. 2008;4:17. doi: 10.1186/1744-8069-4-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [211].Guo S.W., Liu M.G., Long Y.L., Ren L.Y., Lu Z.M., Yu H.Y., et al. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naïve and pain-experiencing rats. BMC Neuroscience. 2007;8:53. doi: 10.1186/1471-2202-8-53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [212].Hao J., Liu M.G., Yu Y.Q., Cao F.L., Li Z., Lu Z.M., et al. Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience. 2008;152:1067–1075. doi: 10.1016/j.neuroscience.2007.12.038. [DOI] [PubMed] [Google Scholar]
  • [213].Li M.M., Yu Y.Q., Fu H., Xie F., Xu L.X., Chen J. Extracellular signaling-regulated kinases mediate the melittin-induced hypersensitivity of spinal neurons to chemical and thermal but not mechanical stimuli. Brain Res Bull. 2008;77:227–232. doi: 10.1016/j.brainresbull.2008.07.009. [DOI] [PubMed] [Google Scholar]
  • [214].Liu M.G., Zhang F.K., Guo S.W., Zhao L.F., An Y.Y., Cui X.Y., et al. Phosphorylation of c-Jun N-terminal kinase isoforms and their different roles in spinal cord dorsal horn and primary somatosensory cortex. Neurosci Lett. 2007;427:39–43. doi: 10.1016/j.neulet.2007.09.001. [DOI] [PubMed] [Google Scholar]
  • [215].Yu Y.Q., Chen J. Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neurosci Lett. 2005;381:194–198. doi: 10.1016/j.neulet.2005.02.033. [DOI] [PubMed] [Google Scholar]
  • [216].Yu Y.Q., Zhao F., Chen J. Activation of ERK1/2 in the primary injury site is required to maintain melittin-enhanced wind-up of rat spinal wide-dynamic-range neurons. Neurosci Lett. 2009;459:137–141. doi: 10.1016/j.neulet.2009.05.004. [DOI] [PubMed] [Google Scholar]
  • [217].Klamt J.G., Prado W.A. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res. 1991;549:9–18. doi: 10.1016/0006-8993(91)90593-K. [DOI] [PubMed] [Google Scholar]
  • [218].Aloisi A.M., Alnonetti M.E., Lodi L., Lupo C., Carli G. Decrease of hippocampal choline acetyltransferase activity induced by formalin pain. Brain Res. 1993;629:167–170. doi: 10.1016/0006-8993(93)90498-C. [DOI] [PubMed] [Google Scholar]
  • [219].Aloisi A.M., Alnonetti M.E., Carli G. Formalin-induced changes in adrenocorticotropic hormone and corticosterone plasma levels and hippocampal choline acetyltransferase activity in male and female rats. Neuroscience. 1996;74:1019–1024. doi: 10.1016/0306-4522(96)00232-1. [DOI] [PubMed] [Google Scholar]
  • [220].Ceccarelli I., Casamenti F., Massafra C., Pepeu G., Scali C., Aloisi A.M. Effects of novelty and pain on behavior and hippocampal extracellular ACh levels in male and female rats. Brain Res. 1999;815:169–176. doi: 10.1016/S0006-8993(98)01171-8. [DOI] [PubMed] [Google Scholar]
  • [221].McMahon S.B., Koltzenburg M. Wall and Melzack’s textbook of pain. Oxford, UK: Elsevier Ltd., Churchill Livingstone; 2005. [Google Scholar]
  • [222].Shih Y.Y., Chen Y.Y., Chen C.C., Chen J.C., Chang C., Jaw F.S. Wholebrain functional magnetic resonance imaging mapping of acute nociceptive responses induced by formalin in rats using atlas registration-based event-related analysis. J Neurosci Res. 2008;86:1801–1811. doi: 10.1002/jnr.21638. [DOI] [PubMed] [Google Scholar]
  • [223].Shih Y.Y., Chiang Y.C., Chen J.C., Huang C.H., Chen Y.Y., Liu R.S., et al. Brain noc icept ive imaging in rats using (18)ffluorodeoxyglucose small-animal positron emission tomography. Neuroscience. 2008;155:1221–1226. doi: 10.1016/j.neuroscience.2008.07.013. [DOI] [PubMed] [Google Scholar]
  • [224].Sakiyama Y., Sato A., Senda M., Ishiwata K., Toyama H., Schmidt R.F. Positron emission tomography reveals changes in global and regional cerebral blood flow during noxious stimulation of normal and inflamed elbow joints in anesthetized cats. Exp Brain Res. 1998;118:439–446. doi: 10.1007/s002210050300. [DOI] [PubMed] [Google Scholar]
  • [225].Apkarian A.V., Bushnell M.C., Treede R.D., Zubieta J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–484. doi: 10.1016/j.ejpain.2004.11.001. [DOI] [PubMed] [Google Scholar]
  • [226].Peyron R., Laurent B., García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000) Neurophysiol Clin. 2000;30:263–288. doi: 10.1016/S0987-7053(00)00227-6. [DOI] [PubMed] [Google Scholar]
  • [227].Schneider F., Habel U., Holthusen H., Kessler C., Posse S., Müller-Gärtner H.W., et al. Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology. 2001;43:175–185. doi: 10.1159/000054887. [DOI] [PubMed] [Google Scholar]
  • [228].Bingel U., Quante M., Knab R., Bromm B., Weiller C., Büchel C. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain. 2002;99:313–321. doi: 10.1016/S0304-3959(02)00157-4. [DOI] [PubMed] [Google Scholar]
  • [229].Ploghaus A., Narain C., Beckmann C.F., Clare S., Bantick S., Wise R., et al. Exacerbation of pain by anxiety is associated with activity in a hippocampus network. J Neurosci. 2001;21:9896–9903. doi: 10.1523/JNEUROSCI.21-24-09896.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [230].Derbyshire S.W.G., Jones A.K.P., Gyulai F., Clark S., Townsend D., Firestone L.L. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997;73:431–445. doi: 10.1016/S0304-3959(97)00138-3. [DOI] [PubMed] [Google Scholar]
  • [231].Hsieh J.C., Ståhle-Bäckdahl M., Hägermark, Stone-Elander S., Rosenquist G., Ingvar M. Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain. 1995;64:303–314. doi: 10.1016/0304-3959(95)00129-8. [DOI] [PubMed] [Google Scholar]
  • [232].Peyron R., Garcý’a-Larrea L., Gre’goire M.C., Costes N., Convers P., Lavenne F., et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain. 1999;122:1765–1779. doi: 10.1093/brain/122.9.1765. [DOI] [PubMed] [Google Scholar]
  • [233].LaMotte R.H., Lundberg L.E., Torebjörk H.E. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol. 1992;448:749–764. doi: 10.1113/jphysiol.1992.sp019068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [234].Simone D.A., Baumann T.K., LaMotte R.H. Dose-dependent pain and mechanical hyperalgesia after intradermal injection of capsaicin. Pain. 1989;38:99–107. doi: 10.1016/0304-3959(89)90079-1. [DOI] [PubMed] [Google Scholar]
  • [235].Iadarola M.J., Berman K.F., Zeffiro T.A., Byas-Smith M.G., Gracely R.H., Max M.B., et al. Neural activation during acute capsaicinevoked pain and allodynia assessed with PET. Brain. 1998;121:931–947. doi: 10.1093/brain/121.5.931. [DOI] [PubMed] [Google Scholar]
  • [236].Miron D., Duncan G.H., Bushnell M.C. Effects of attention on the intensity and unpleasantness of thermal pain. Pain. 1989;39:345–352. doi: 10.1016/0304-3959(89)90048-1. [DOI] [PubMed] [Google Scholar]
  • [237].Siedenberg R., Treede R.D. Laser-evoked potentials: exogenous and endogenous components. Electroencephalogr Clin Neurophysiol. 1996;100:240–249. doi: 10.1016/0168-5597(95)00255-3. [DOI] [PubMed] [Google Scholar]
  • [238].Ploghaus A., Tracey I., Clare S., Gati J.S., Rawlins J.N.P., Matthews P.M. Learning about pain: the neural substrate of the prediction error for aversive events. Proc Natl Acad Sci. 2000;97:9281–9286. doi: 10.1073/pnas.160266497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [239].Mackintosh N.J. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev. 1975;82:276–298. doi: 10.1037/h0076778. [DOI] [Google Scholar]
  • [240].Recorla R.A., Wagner A.R. A theory of Pavlovian conditioning: variations in the efectiveness of reinforcement and nonreinforcement. In: Black A.H., Proskasy W.F., editors. Classical conditioning II: current research and theory. New York: Appleton-Century-Crofts; 1972. pp. 64–99. [Google Scholar]
  • [241].Bantick S.J., Wise R.G., Ploghaus A., Clare S., Smith S.M., Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002;125:310–319. doi: 10.1093/brain/awf022. [DOI] [PubMed] [Google Scholar]
  • [242].Grachev I.D., Fredickson B.E., Apkarian A.V. Dissociating anxiety from pain: mapping the neuronal marker N-acetyl aspartate to perception distinguishes closely interrelated characteristics of chronic pain. Mol Psychiatry. 2001;6:256–260. doi: 10.1038/sj.mp.4000834. [DOI] [PubMed] [Google Scholar]
  • [243].Al Absi M., Rokke P.D. Can anxiety help us tolerate pain? Pain. 1991;46:43–51. doi: 10.1016/0304-3959(91)90032-S. [DOI] [PubMed] [Google Scholar]
  • [244].Weisenberg M., Aviram O., Wolf Y., Raphaeli N. Relevant and irrelevant anxiety in the reaction to pain. Pain. 1984;20:371–383. doi: 10.1016/0304-3959(84)90114-3. [DOI] [PubMed] [Google Scholar]
  • [245].Rhudy J.L., Meagher M.W. Fear and anxiety: divergent effects on human pain thresholds. Pain. 2000;84:65–75. doi: 10.1016/S0304-3959(99)00183-9. [DOI] [PubMed] [Google Scholar]
  • [246].Derbyshire S.W.G., Jones A.K.P., Collins M., Feinmann C., Harris M. Cerebral responses to pain in patients suffering acute post-dental extraction pain measured by positron emission tomography (PET) Eur J Pain. 1999;3:103–113. doi: 10.1053/eujp.1998.0102. [DOI] [PubMed] [Google Scholar]
  • [247].Woolf C.J., Mannion R.J. Neuropathic pain: aetiology, symptoms, mechanisms, and managements. Lancet. 1999;353:1959–1964. doi: 10.1016/S0140-6736(99)01307-0. [DOI] [PubMed] [Google Scholar]
  • [248].Petrovic P., Ingvar M., Stone-Elander S., Petersson K.M., Hansson P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain. 1999;83:459–470. doi: 10.1016/S0304-3959(99)00150-5. [DOI] [PubMed] [Google Scholar]
  • [249].Rosen S.D., Paulesu E., Nihoyannopoulos P., Tousoulis D., Frackowiak R.S.J., Frith C.D., et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med. 1996;124:939–949. doi: 10.7326/0003-4819-124-11-199606010-00001. [DOI] [PubMed] [Google Scholar]
  • [250].Brown M.W., Aggleton J.P. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci. 2001;2:51–61. doi: 10.1038/35049064. [DOI] [PubMed] [Google Scholar]
  • [251].Moser M.B., Moser E.I. Functional differentiation in the hippocampus. Hippocampus. 1998;8:608–619. doi: 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  • [252].Bliss T.V.P., Collingridge G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  • [253].Bennett M.R. The concept of long term potentiation of transmission at synapses. Prog Neurobiol. 2000;60:109–137. doi: 10.1016/S0301-0082(99)00006-4. [DOI] [PubMed] [Google Scholar]
  • [254].Malenka R.C., Nicoll R.A. LTP-A decade of progress? Science. 1999;85:1870–1874. doi: 10.1126/science.285.5435.1870. [DOI] [PubMed] [Google Scholar]
  • [255].Ji R.R., Kohno T., Moore K.A., Woolf C.J. Central sensitization and LTP do pain and memory share similar mechanisms. Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017. [DOI] [PubMed] [Google Scholar]
  • [256].Ikeda H., Heinke B., Ruscheweyh R., Sandkühler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science. 2003;299:1237–1240. doi: 10.1126/science.1080659. [DOI] [PubMed] [Google Scholar]
  • [257].Sandkühler J. Understanding LTP in pain pathways. Mol Pain. 2007;3:9. doi: 10.1186/1744-8069-3-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [258].Heusler P., Boehmer G. Platelet-activating factor contributes to the induction of long-term potentiation in the rat somatosensory cortex in vitro. Brain Res. 2007;1135:85–91. doi: 10.1016/j.brainres.2006.12.016. [DOI] [PubMed] [Google Scholar]
  • [259].Wei F., Qiu C.S., Liauw J., Robinson D.A., Ho N., Chatila T., et al. Calcium-calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci. 2002;5:573–579. doi: 10.1038/nn0602-855. [DOI] [PubMed] [Google Scholar]
  • [260].Ko S., Zhao M.G., Toyoda H., Qiu C.S., Zhuo M. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J Neurosci. 2005;25:977–984. doi: 10.1523/JNEUROSCI.4059-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [261].Zhao M.G., Toyoda H., Lee Y.S., Wu L.J., Ko S.W., Zhang X.H., et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron. 2005;47:859–872. doi: 10.1016/j.neuron.2005.08.014. [DOI] [PubMed] [Google Scholar]
  • [262].Apkarian A.V., Baliki M.N., Geha P.Y. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97. doi: 10.1016/j.pneurobio.2008.09.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [263].May A. Chronic pain may change the structure of the brain. Pain. 2008;137:7–15. doi: 10.1016/j.pain.2008.02.034. [DOI] [PubMed] [Google Scholar]
  • [264].Edwards L., Pearce S., Collett B.J., Pugh R. Selective memory for sensory and affective information in chronic pain and depression. Br J Clin Psychol. 1992;31:239–248. doi: 10.1111/j.2044-8260.1992.tb00990.x. [DOI] [PubMed] [Google Scholar]
  • [265].Pauli P., Alpers G.W. Memory bias in patients with hypochondriasis and somatoform pain disorder. J Psychosom Res. 2002;52:45–53. doi: 10.1016/S0022-3999(01)00295-1. [DOI] [PubMed] [Google Scholar]
  • [266].Pearce S.A., Isherwood S., Hrouda D., Richardson P.H., Erskine A., Skinner J. Memory and pain: tests of mood congruity and state dependent learning in experimentally induced and clinical pain. Pain. 1990;43:187–193. doi: 10.1016/0304-3959(90)91072-Q. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES