Abstract
The morphology of F1-ATPases lacking one or more small subunits has been investigated by minimal-beam electron microscopy of close-packed monolayers of molecules. Computer-based rotational analyses of single molecules were performed on reconstituted 3-subunit F1-ATPase (-delta epsilon) from Escherichia coli and both 3-subunit (-delta epsilon) and 4-subunit (-delta) F1-ATPase from chloroplasts. Optical diffraction measurements of close-packed arrays revealed maximal dimensions of 122 +/- 4 A and 129 +/- 9 A for 3-subunit ECF1 and 4-subunit CF1, respectively. Molecules which displayed either hollow or solid hexagonal morphologies were observed in all preparations. Averaged reconstructions were obtained from molecules with hollow morphologies in 3-subunit preparations and demonstrated strong hexagonal symmetry in projection with a central, stain-filled cavity. The average reconstruction obtained from molecules with the solid morphology in 4-subunit CF1 preparations, was also strongly hexagonal with six peripheral units ringed about a central subunit. Differences between hollow and solid morphologies cannot be attributed solely to the presence or absence of the delta and epsilon subunits; therefore, the two image types may represent staining variants of a common structure. Overall, the reconstructions are consistent with an alpha 3 beta 3 gamma stoichiometry for the coupling factors from both E. coli and chloroplasts.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akey C. W., Spitsberg V., Edelstein S. J. Electron microscopy of beef heart F1-ATPase crystals. J Biol Chem. 1983 Mar 10;258(5):3222–3229. [PubMed] [Google Scholar]
- Amzel L. M., McKinney M., Narayanan P., Pedersen P. L. Structure of the mitochondrial F1 ATPase at 9-A resolution. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5852–5856. doi: 10.1073/pnas.79.19.5852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amzel L. M., Pedersen P. L. Adenosine triphosphatase from rat liver mitochondria. Crystallization and x-ray diffraction studies of the F1-component of the enzyme. J Biol Chem. 1978 Apr 10;253(7):2067–2069. [PubMed] [Google Scholar]
- Andreo C. S., Patrie W. J., McCarty R. E. Effect of ATPase activation and the delta subunit of coupling factor 1 on reconstitution of photophosphorylation. J Biol Chem. 1982 Sep 10;257(17):9968–9975. [PubMed] [Google Scholar]
- Baird B. A., Hammes G. G. Structure of oxidative- and photo-phosphorylation coupling factor complexes. Biochim Biophys Acta. 1979 Jul 3;549(1):31–53. doi: 10.1016/0304-4173(79)90017-x. [DOI] [PubMed] [Google Scholar]
- Bragg P. D., Hou C. Subunit composition, function, and spatial arrangement in the Ca2+-and Mg2+-activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium. Arch Biochem Biophys. 1975 Mar;167(1):311–321. doi: 10.1016/0003-9861(75)90467-1. [DOI] [PubMed] [Google Scholar]
- Catterall W. A., Pedersen P. L. Adenosine triphosphatase from rat liver mitochondria. I. Purification, homogeneity, and physical properties. J Biol Chem. 1971 Aug 25;246(16):4987–4994. [PubMed] [Google Scholar]
- Crepeau R. H., McEwen B., Dykes G., Edelstein S. J. Structural studies on porcine brain tubulin in extended sheets. J Mol Biol. 1977 Oct 25;116(2):301–315. doi: 10.1016/0022-2836(77)90218-2. [DOI] [PubMed] [Google Scholar]
- Crowther R. A., Amos L. A. Harmonic analysis of electron microscope images with rotational symmetry. J Mol Biol. 1971 Aug 28;60(1):123–130. doi: 10.1016/0022-2836(71)90452-9. [DOI] [PubMed] [Google Scholar]
- Dunn S. D., Futai M. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem. 1980 Jan 10;255(1):113–118. [PubMed] [Google Scholar]
- Dunn S. D., Heppel L. A. Properties and functions of the subunits of the Escherichia coli coupling factor ATPase. Arch Biochem Biophys. 1981 Sep;210(2):421–436. doi: 10.1016/0003-9861(81)90206-x. [DOI] [PubMed] [Google Scholar]
- Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esch F. S., Allison W. S. On the subunit stoichiometry of the F1-ATPase and the sites in it that react specifically with p-fluorosulfonylbenzoyl-5'-adenosine. J Biol Chem. 1979 Nov 10;254(21):10740–10746. [PubMed] [Google Scholar]
- Foster D. L., Fillingame R. H. Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):2009–2015. [PubMed] [Google Scholar]
- Frank J. Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy. 1975 Dec;1(2):159–162. doi: 10.1016/s0304-3991(75)80020-9. [DOI] [PubMed] [Google Scholar]
- Futai M. Reconstitution of ATPase activity from the isolated alpha, beta, and gamma subunits of the coupling factor, F1, of Escherichia coli. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1231–1237. doi: 10.1016/0006-291x(77)91138-x. [DOI] [PubMed] [Google Scholar]
- Hinkle P. C., McCarty R. E. How cells make ATP. Sci Am. 1978 Mar;238(3):104-17, 121-3. doi: 10.1038/scientificamerican0378-104. [DOI] [PubMed] [Google Scholar]
- Horne R. W., Ronchetti I. P. A negative staining-carbon film technique for studying viruses in the electron microscope. I. Preparative procedures for examining icosahedral and filamentous viruses. J Ultrastruct Res. 1974 Jun;47(3):361–383. doi: 10.1016/s0022-5320(74)90015-x. [DOI] [PubMed] [Google Scholar]
- Kagawa Y., Sone N., Yoshida M., Hirata H., Okamoto H. Proton translocating ATPase of a thermophilic bacterium. Morphology, subunits, and chemical composition. J Biochem. 1976 Jul;80(1):141–151. doi: 10.1093/oxfordjournals.jbchem.a131246. [DOI] [PubMed] [Google Scholar]
- Moroney J. V., McCarty R. E. Effect of proteolytic digestion on the Ca2+-ATPase activity and subunits of latent and thiol-activated chloroplast coupling factor 1. J Biol Chem. 1982 May 25;257(10):5910–5914. [PubMed] [Google Scholar]
- Munoz E., Freer J. H., Ellar D. J., Salton M. R. Membrane-associated ATPase activity from Micrococcus lysodeikticus. Biochim Biophys Acta. 1968 Apr 29;150(3):531–533. doi: 10.1016/0005-2736(68)90156-9. [DOI] [PubMed] [Google Scholar]
- Nelson N. Structure and function of chloroplast ATPase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):314–338. doi: 10.1016/0304-4173(76)90003-3. [DOI] [PubMed] [Google Scholar]
- Paradies H. H. Physical characterization of the reconstituted F1-ATPase of Escherichia coli from the main subunits (alpha, beta, gamma). FEBS Lett. 1981 Oct 12;133(1):17–21. doi: 10.1016/0014-5793(81)80461-9. [DOI] [PubMed] [Google Scholar]
- Paradies H. H., Schmidt U. D. Size and molecular parameters of adenosine triphosphatase from Escherichia coli. J Biol Chem. 1979 Jun 25;254(12):5257–5263. [PubMed] [Google Scholar]
- Paradies H. H., Zimmermann J., Schmidt U. D. The conformation of chloroplast coupling factor 1 from spinach in solution. J Biol Chem. 1978 Dec 25;253(24):8972–8979. [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saraste M., Gay N. J., Eberle A., Runswick M. J., Walker J. E. The atp operon: nucleotide sequence of the genes for the gamma, beta, and epsilon subunits of Escherichia coli ATP synthase. Nucleic Acids Res. 1981 Oct 24;9(20):5287–5296. doi: 10.1093/nar/9.20.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satre M., Zaccaï G. Small angle neutron scattering of Escherichia coli BF1-ATPase. FEBS Lett. 1979 Jun 15;102(2):244–248. doi: 10.1016/0014-5793(79)80010-1. [DOI] [PubMed] [Google Scholar]
- Schatz G., Penefsky H. S., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIV. J Biol Chem. 1967 May 25;242(10):2552–2560. [PubMed] [Google Scholar]
- Schnebli H. P., Vatter A. E., Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition. J Biol Chem. 1970 Mar 10;245(5):1122–1127. [PubMed] [Google Scholar]
- Senior A. E., Brooks J. C. The subunit composition of the mitochondrial oligomycin-insensitive ATPase. FEBS Lett. 1971 Oct 1;17(2):327–329. doi: 10.1016/0014-5793(71)80178-3. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Sternweis P. C. Subunit specific antisera to the Escherichia coli ATP synthase: effects on ATPase activity, energy transduction, and enzyme assembly. Arch Biochem Biophys. 1982 Aug;217(1):376–387. doi: 10.1016/0003-9861(82)90514-8. [DOI] [PubMed] [Google Scholar]
- Soper J. W., Decker G. L., Pedersen P. L. Mitochondrial ATPase complex. A dispersed, cytochrome-deficient, oligomycin-sensitive preparation from rat liver containing molecules with a tripartite structural arrangement. J Biol Chem. 1979 Nov 10;254(21):11170–11176. [PubMed] [Google Scholar]




