Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2017 Aug 10;5(32):e00617-17. doi: 10.1128/genomeA.00617-17

Draft Nuclear Genome, Complete Chloroplast Genome, and Complete Mitochondrial Genome for the Biofuel/Bioproduct Feedstock Species Scenedesmus obliquus Strain DOE0152z

S R Starkenburg a, J E W Polle b,c, B Hovde a, H E Daligault a, K W Davenport a, A Huang b, P Neofotis b,c, Z McKie-Krisberg b,
PMCID: PMC5552973  PMID: 28798164

ABSTRACT

The green alga Scenedesmus obliquus is an emerging platform species for the industrial production of biofuels. Here, we report the draft assembly and annotation for the nuclear, plastid, and mitochondrial genomes of S. obliquus strain DOE0152z.

GENOME ANNOUNCEMENT

The coccoid green alga Scenedesmus obliquus (Turpin) Kützing, which has the synonyms Tetradesmus obliquus (Turpin) Wynne and Acutodesmus obliquus (Turpin) Hegewald & Hanagata and the basionym Achnanthes obliqua (Turpin), is a common freshwater alga (1, 2) in the family Scenedesmaceae within the Chlorophyta (= green algae). S. obliquus was previously investigated as a feedstock for protein production (3), but the species is now being cultivated for biofuel applications (412) and has also been suggested to be a source for edible oils (13).

Purified S. obliquus strain DOE0152z genomic DNA was sequenced and assembled using Pacific Biosciences (PacBio) (Menlo Park, CA, USA) long-read sequencing. Briefly, genomic DNA was size selected (20-kb DNA libraries) using Blue Pippin (Sage Science, Beverly, MA, USA) in a 0.75% agarose gel cassette and converted into a 20-kb single-molecule real-time (SMRT) bell library according to the manufacturer’s instructions (PacBio). These size-selected libraries were sequenced on a PacBio RS II single-molecule sequencer (14) utilizing C3-P5 chemistry and 3-h movies. The library preparation protocol was repeated twice to generate two libraries/sequencing templates from the same genomic DNA pool. In total, 46 SMRT cells were sequenced, and these cells collectively produced 556,064 subreads with a mean subread length of 5,094 kb, which provided 18,115 Mbp of data or approximately 86× coverage of the assembled genome size. All PacBio subreads greater than 5 kb in length were assembled with HGAP version 2.3.0 (15). The mitochondrial and chloroplast genomes were assembled manually from fragmented contigs pulled from this initial assembly by mapping to previously sequenced Scenedesmus organellar genomes (GenBank numbers AF204057 and DQ396875, respectively). Chloroplast and mitochondrial genomes were extracted with DECONseq software, using a database constructed from previously published mitochondrial sequences for S. obliquus strain UTEX 78, and chloroplast sequences from A. obliquus (GenBank accession number DQ396875). Extracted contigs were mapped back onto reference sequences to ensure full coverage to plastid and mitochondrial genomes.

The final genome assembly resulted in 2,705 contigs with an N50 of 155,544 bp, a minimum contig size of 11,140 bp, a maximum contig size of 2,334,183 bp, and a total assembly size of 207,967,116 bp. Recently, a draft assembly of the nuclear genome was reported for Tetradesmus obliquus strain UTEX393 with a size of approximately 109 Mbp (16). In contrast, the draft assembly of the nuclear genome of DOE0152z is almost twice the size at >210 Mbp. Furthermore, strain DOE0152z contains a plastid chromosome of 167,272 bp and the mitochondrial genome assembled to 41,704 bp. To the best of our knowledge, this is the first report of a nuclear, plastid, and mitochondrial genome assembly from the same Scenedesmus strain.

Accession number(s).

This whole-genome project is publicly available on the LANL Greenhouse page (https://greenhouse.lanl.gov/greenhouse/) and was deposited in DDBJ/ENA/GenBank under the accession number NEDT00000000. The version described in this paper is version NEDT01000000.

ACKNOWLEDGMENT

This work was supported by funding from the Department of Energy under award numbers DE-SC0012556 and DE-NL0029949.

Footnotes

Citation Starkenburg SR, Polle JEW, Hovde B, Daligault HE, Davenport KW, Huang A, Neofotis P, McKie-Krisberg Z. 2017. Draft nuclear genome, complete chloroplast genome, and complete mitochondrial genome for the biofuel/bioproduct feedstock species Scenedesmus obliquus strain DOE0152z. Genome Announc 5:e00617-17. https://doi.org/10.1128/genomeA.00617-17.

REFERENCES

  • 1.Kützing FT. 1834. Synopsis Diatomearum oder, Versuch einer systematischen Zusammenstellung der Diatomeen. Schwetschke, Halle, Germany. [Google Scholar]
  • 2.Smith GM. 1933. Fresh-water algae of the United States. McGraw-Hill, New York, NY. [Google Scholar]
  • 3.Becker EW. 1994. Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, United Kingdom. [Google Scholar]
  • 4.Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226. doi: 10.1016/j.biortech.2012.08.003. [DOI] [PubMed] [Google Scholar]
  • 5.Breuer G, Lamers PP, Janssen M, Wijffels RH, Martens DE. 2015. Opportunities to improve the areal oil productivity of microalgae. Bioresour Technol 186:294–302. doi: 10.1016/j.biortech.2015.03.085. [DOI] [PubMed] [Google Scholar]
  • 6.Ferrigo D, Galla G, Sforza E, Morosinotto T, Barcaccia G, Ceschi Berrini CC. 2015. Biochemical characterization and genetic identity of an oil-rich Acutodesmus obliquus isolate. J Appl Phycol 27:149–161. doi: 10.1007/s10811-014-0315-5. [DOI] [Google Scholar]
  • 7.Neofotis P, Huang A, Sury K, Chang W, Joseph F, Gabr A, Twary S, Qiu W, Holguin O, Polle JEW. 2016. Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Res 15:164–178. doi: 10.1016/j.algal.2016.01.007. [DOI] [Google Scholar]
  • 8.Silva CM, Ferreira AF, Dias AP, Costa M. 2016. A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. J Cleaner Product 130:58–67. doi: 10.1016/j.jclepro.2015.09.053. [DOI] [Google Scholar]
  • 9.Singh SP, Singh P. 2014. Effect of CO2 concentration on algal growth: a review. Renew Sustain Energ Rev . 38:172–179. doi: 10.1016/j.rser.2014.05.043. [DOI] [Google Scholar]
  • 10.Song M, Pei H, Hu W, Ma G. 2013. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251. doi: 10.1016/j.biortech.2013.02.024. [DOI] [PubMed] [Google Scholar]
  • 11.Unkefer CJ, Sayre RT, Magnuson JK, Anderson DB, Baxter I, Blaby IK, Brown JK, Carleton M, Cattolico RA, Dale T, Devarenne TP, Downes CM, Dutcher SK, Fox DT, Goodenough U, Jaworski J, Holladay JE, Kramer DM, Koppisch AT, Lipton MS, Marrone BL, McCormick M, Molnár I, Mott JB, Ogden KL, Panisko EA, Pellegrini M, Polle J, Richardson JW, Sabarsky M, Starkenburg SR, Stormo GD, Teshima M, Twary SN, Unkefer PJ, Yuan JS, Olivares JA. 2017. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res 22:187–215. doi: 10.1016/j.algal.2016.06.002. [DOI] [Google Scholar]
  • 12.Lammers PJ, Huesemann M, Boeing W, Anderson DB, Arnold RG, Bai X, Bhole M, Brhanavan Y, Brown L, Brown J, Brown JK, Chisholm S, Meghan Downes C, Fulbright S, Ge Y, Holladay JE, Ketheesan B, Khopkar A, Koushik A, Laur P, Marrone BL, Mott JB, Nirmalakhandan N, Ogden KL, Parsons RL, Polle J, Ryan RD, Samocha T, Sayre RT, Seger M, Selvaratnam T, Sui R, Thomasson A, Unc A, Van Voorhies W, Waller P, Yao Y, Olivares JA. 2017. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res 22:166–186. doi: 10.1016/j.algal.2016.11.021. [DOI] [Google Scholar]
  • 13.Huang Y, Zhang D, Xue S, Wang M, Cong W. 2016. The potential of microalgae lipids for edible oil production. Appl Biochem Biotechnol 180:438–451. doi: 10.1007/s12010-016-2108-6. [DOI] [PubMed] [Google Scholar]
  • 14.Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi: 10.1126/science.1162986. [DOI] [PubMed] [Google Scholar]
  • 15.Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 16.Carreres BM, de Jaeger L, Springer J, Barbosa MJ, Breuer G, van den End EJ, Kleinegris DMM, Schäffers I, Wolbert EJH, Zhang H, Lamers PP, Draaisma RB, Martins Dos Santos VA, Wijffels RH, Eggink G, Schaap PJ, Martens DE. 2017. Draft genome sequence of the oleaginous green alga Tetradesmus obliquus UTEX 393. Genome Announc 5(3):e01449-16. doi: 10.1128/genomeA.01449-16. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES