Abstract
It was previously shown that a common multigenic component, designated as tumor-specific DNA (tsDNA), was transcriptionally active in human lymphoid neoplasias and only slightly active, if at all, in normal lymphoid cells, including the Priess cell line immortalized by Epstein-Barr virus. In the Burkitt lymphoma-derived Raji cell line, tsDNA corresponded to 2500-3000 distinct transcription units, arbitrarily defined as encoding mRNA chains of 1000 kds each. In the present study, radioactive Raji cell tsDNA was isolated by a recycling procedure which eliminates transcribed DNA sequences common to both the Raji cell and the Priess cell, and was used as a probe for homologous transcripts. The major part of this probe could be hybridized to RNAs from all the human neoplasias studied: cultured cell lines derived from leukemias, malignant lymphomas or sarcomas, leukemic cells or solid tumors (sarcomas and carcinomas) recovered from patients. In contrast, only a minor portion of Raji cell tsDNA could be hybridized to RNAs from non-malignant cells, normal human lymphoid cells or fibroblasts grown in culture, fetal and chorioplacental tissues. It is concluded that a common multigenic set is activated in a wide variety of, and perhaps in all, human neoplasias.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cairns J. The origin of human cancers. Nature. 1981 Jan 29;289(5796):353–357. doi: 10.1038/289353a0. [DOI] [PubMed] [Google Scholar]
- Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
- Epstein M. A., Achong B. G., Barr Y. M., Zajac B., Henle G., Henle W. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst. 1966 Oct;37(4):547–559. [PubMed] [Google Scholar]
- Eva A., Robbins K. C., Andersen P. R., Srinivasan A., Tronick S. R., Reddy E. P., Ellmore N. W., Galen A. T., Lautenberger J. A., Papas T. S. Cellular genes analogous to retroviral onc genes are transcribed in human tumour cells. Nature. 1982 Jan 14;295(5845):116–119. doi: 10.1038/295116a0. [DOI] [PubMed] [Google Scholar]
- Getz M. J., Reiman H. M., Jr, Siegal G. P., Quinlan T. J., Proper J., Elder P. K., Moses H. L. Gene expression in chemically transformed mouse embryo cells: selective enhancement of the expression of C type RNA tumor virus genes. Cell. 1977 Aug;11(4):909–921. doi: 10.1016/0092-8674(77)90302-6. [DOI] [PubMed] [Google Scholar]
- Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
- Goldfarb M., Shimizu K., Perucho M., Wigler M. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature. 1982 Apr 1;296(5856):404–409. doi: 10.1038/296404a0. [DOI] [PubMed] [Google Scholar]
- Grady L. J., Campbell W. P. Non-repetitive DNA transcription in mouse cells grown in tissue culture. Nat New Biol. 1973 Jun 13;243(128):195–198. doi: 10.1038/newbio243195a0. [DOI] [PubMed] [Google Scholar]
- Hanania N., Shaool D., Harel J. Isolation of a mouse DNA fraction which encodes more informational than non informational RNA sequences. Mol Biol Rep. 1982 Mar 31;8(2):91–96. doi: 10.1007/BF00778510. [DOI] [PubMed] [Google Scholar]
- Hanania N., Shaool D., Poncy C., Harel J. Manifold expression of new cellular genes in human lymphoid neoplasia. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6504–6508. doi: 10.1073/pnas.78.10.6504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitzis A., Leibovitch S. A., Leibovitch M. P., Tichonicky L., Harel J., Kruh J. The small chromatin fragments released by micrococcal nuclease from hepatoma tissue cultured cell nuclei are strongly enriched in coding DNA sequences and are related to an actively transcribed single-stranded DNA fraction. Biochim Biophys Acta. 1982 Apr 26;697(1):60–70. doi: 10.1016/0167-4781(82)90045-8. [DOI] [PubMed] [Google Scholar]
- Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology. 1975;5(6):319–334. doi: 10.1159/000149930. [DOI] [PubMed] [Google Scholar]
- Klein G., Lindahl T., Jondal M., Leibold W., Menézes J., Nilsson K., Sundström C. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3283–3286. doi: 10.1073/pnas.71.8.3283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein G. The role of gene dosage and genetic transpositions in carcinogenesis. Nature. 1981 Nov 26;294(5839):313–318. doi: 10.1038/294313a0. [DOI] [PubMed] [Google Scholar]
- Krontiris T. G., Cooper G. M. Transforming activity of human tumor DNAs. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1181–1184. doi: 10.1073/pnas.78.2.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibovitch S. A., Guillier M., Harel J. Accessibility of some regions of chromatin of leukemic chicken cells to single strand nuclease S1. Biochem Biophys Res Commun. 1981 Aug 14;101(3):719–726. doi: 10.1016/0006-291x(81)91810-6. [DOI] [PubMed] [Google Scholar]
- Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
- Mercier G., Harel J. Sequence homology between polyadenylated mRNAs from transplantable mouse tumours of different origin, as compared to mRNAs from normal adult or embryonic tissues. Eur J Biochem. 1982 Apr 1;123(2):407–414. doi: 10.1111/j.1432-1033.1982.tb19783.x. [DOI] [PubMed] [Google Scholar]
- Pulciani S., Santos E., Lauver A. V., Long L. K., Aaronson S. A., Barbacid M. Oncogenes in solid human tumours. Nature. 1982 Dec 9;300(5892):539–542. doi: 10.1038/300539a0. [DOI] [PubMed] [Google Scholar]
- Reddy E. P., Reynolds R. K., Santos E., Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature. 1982 Nov 11;300(5888):149–152. doi: 10.1038/300149a0. [DOI] [PubMed] [Google Scholar]
- Rolton H. A., Birnie G. D., Paul J. The diversity and specificity of nuclear and polysomal poly(A)+ RNA populations in normal and MSV-transformed cells. Cell Differ. 1977 Jun;6(1):25–39. doi: 10.1016/0045-6039(77)90042-2. [DOI] [PubMed] [Google Scholar]
- Rosén A., Clements G., Klein G., Zeuthen J. Double immunoglobulin production in cloned somatic cell hybrids between two human lymphoid cell lines. Cell. 1977 May;11(1):139–147. doi: 10.1016/0092-8674(77)90324-5. [DOI] [PubMed] [Google Scholar]
- Schapira F. Resurgence of fetal isozymes in cancer: study of aldolase, pyruvate kinase, lactic dehydrogenase, and beta-hexosaminidase. Isozymes Curr Top Biol Med Res. 1981;5:27–75. [PubMed] [Google Scholar]
- Shih C., Padhy L. C., Murray M., Weinberg R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981 Mar 19;290(5803):261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
- Shih C., Shilo B. Z., Goldfarb M. P., Dannenberg A., Weinberg R. A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5714–5718. doi: 10.1073/pnas.76.11.5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strand M., August J. T. Polypeptide maps of cells infected with murine type C leukemia or sarcoma oncovirus. Cell. 1978 Feb;13(2):399–408. doi: 10.1016/0092-8674(78)90208-8. [DOI] [PubMed] [Google Scholar]
- Supowit S. C., Rosen J. M. Tumor-specific polyadenylated RNA's from 7,12-dimethylbenz(a)anthracene-induced mammary tumors revealed through hybridization with fractionated single-copy DNA. Cancer Res. 1981 Oct;41(10):3827–3834. [PubMed] [Google Scholar]
- Tabin C. J., Bradley S. M., Bargmann C. I., Weinberg R. A., Papageorge A. G., Scolnick E. M., Dhar R., Lowy D. R., Chang E. H. Mechanism of activation of a human oncogene. Nature. 1982 Nov 11;300(5888):143–149. doi: 10.1038/300143a0. [DOI] [PubMed] [Google Scholar]
- Tapiero H., Monier M. N., Shaool D., Harel J. Distribution of repetitious sequences in chick nuclear DNA. Nucleic Acids Res. 1974 Feb;1(2):309–322. doi: 10.1093/nar/1.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uriel J. Retrodifferentiation and the fetal patterns of gene expression in cancer. Adv Cancer Res. 1979;29:127–174. doi: 10.1016/s0065-230x(08)60847-7. [DOI] [PubMed] [Google Scholar]
- Weinhouse S. Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture. Cancer Res. 1972 Oct;32(10):2007–2016. [PubMed] [Google Scholar]
- Williams J. G., Hoffman R., Penman S. The extensive homology between mRNA sequences of normal and SV40-transformed human fibroblasts. Cell. 1977 Aug;11(4):901–907. doi: 10.1016/0092-8674(77)90301-4. [DOI] [PubMed] [Google Scholar]
