Skip to main content
Springer logoLink to Springer
. 2017 Aug 15;2017(1):187. doi: 10.1186/s13660-017-1460-6

Some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two variables and their applications

Run Xu 1,, Xiangting Ma 1
PMCID: PMC5557940  PMID: 28860688

Abstract

In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.

Keywords: Volterra-Fredholm type, integral inequality, integral equations, maxima, iterated integral inequality

Introduction

Gronwall-Bellman inequality [1, 2] and Bihari inequality [3] provided important devices in the study of existence, uniqueness, boundedness, oscillation, stability, invariant manifolds and other qualitative properties of solutions to differential equations, integral equations and integro-differential equations. In the past few decades, a number of studies have focused on generalizations of the Gronwall-Bellman inequality. For example, in [410], the Gronwall-Bellman-Gamidov type integral inequalities and their generalizations were studied; in [1114], the Gronwall-like inequalities and their deformations were investigated; in [1518], the Volterra type iterated inequalities were discussed; in [1924], the Volterra-Fredholm type inequalities were examined.

The Gronwall-Bellman inequality can be stated as follows.

If u and f are nonnegative continuous functions on an interval [a,b], and u satisfies the following inequality:

u(t)c+atf(s)u(s)ds,t[a,b], 1.1

where c0 is a constant. Then

u(t)cexp(atf(s)ds). 1.2

In 2004, Pachpatte [6] investigated the retarded linear Volterra-Fredholm type integral inequality in two independent variables:

u(x,y)c+α(x0)α(x)β(y0)β(y)a(x,y,s,t)u(s,t)dtds+α(x0)α(M)β(y0)β(N)b(x,y,s,t)u(s,t)dtds,(x,y)[x0,M]×[y0,N]. 1.3

In 2010, Wang [14] investigated a retarded Volterra type integral inequality with two variables:

ψ(u(x,y))a(x,y)+b(x,y)x0xc(s,y)ψ(u(s,y))ds+d(x,y)[α1(x0)α1(x)β1(y0)β1(y)f1(s,t)φ1(u(s,t))dtds+α2(x0)α2(x)β2(y0)β2(y)f2(s,t)φ2(u(s,t))dtds],(x,y)[x0,x1)×[y0,y1). 1.4

In 2014, Lu et al. [21] studied the nonlinear retarded Volterra-Fredholm type iterated integral inequality:

u(x,y)k+α(x0)α(x)β(y0)β(y)h1(s1,t1)ω(u(s1,t1))×[f1(s1,t1)ω1(u(s1,t1))+α(x0)s1β(y0)t1h2(s2,t2)[f2(s2,t2)ω2(u(s2,t2))+α(x0)s2β(y0)t2h3(s3,t3)ω3(u(s3,t3))dt3ds3]dt2ds2]dt1ds1+α(x0)α(M)β(y0)β(N)h1(s1,t1)ω(u(s1,t1))[f1(s1,t1)ω1(u(s1,t1))+α(x0)s1β(y0)t1h2(s2,t2)[f2(s2,t2)ω2(u(s2,t2))+α(x0)s2β(y0)t2h3(s3,t3)ω3(u(s3,t3))dt3ds3]dt2ds2]dt1ds1,(x,y). 1.5

In 2016, Huang and Wang [23] discussed the retarded nonlinear Volterra-Fredholm type integral inequality with maxima:

φ(v(t))k+α(t0)α(t)h1(s)[f1(s)ϕ1(v(s))+α(t0)sh2(τ)[f2(τ)ϕ2(v(τ))φ(v(t))+α(t0)τh3(ξ)ϕ3(maxη[ξh,ξ]v(η))dξ]dτ]dsφ(v(t))+α(t0)α(T)h1(s)[f1(s)ϕ1(v(s))+α(t0)sh2(τ)[f2(τ)ϕ2(v(τ))φ(v(t))+α(t0)τh3(ξ)ϕ3(maxη[ξh,ξ]v(η))dξ]dτ]ds,t[t0,T],v(t)k,t[t0h,t0]. 1.6

Motivated by the work presented in [14, 21, 23], we establish some new retarded nonlinear Volterra-Fredholm type integral inequality with maxima in two independent variables in this paper:

ψ(u(x,y))k(x,y)+α(x)a(s,y)ψ(u(s,y))ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(u(s,t))+stci(ξ,η,x,y)φ2(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)ψ(u(s,t))+stej(ξ,η,x,y)ψ(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt,(x,y)Δ, 1.7

and

up(x,y)k(x,y)+α(x)a(s,y)up(s,y)ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)uqi(s,t)+stci(ξ,η,x,y)maxσ[ξ,hξ]uri(σ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)uεj(s,t)+stej(ξ,η,x,y)maxσ[ξ,hξ]uδj(σ,η)dξdη]dsdt,(x,y)Δ. 1.8

By the amplification method, differential and integration, and the inverse function, we obtain the lower bound estimation of the unknown function. The example is given to illustrate the application of our results.

Main results

In what follows, R denotes the set of real numbers, R+=[0,+), I1=[M,+), I2=[N,+) are the given subsets of R, Δ=I1×I2. C1(Ω,S) denotes the class of all continuously differentiable functions defined on set Ω with range in the set S, C(Ω,S) denotes the class of all continuous functions defined on set Ω with range in the set S, and α(t) denotes the derived function of a function α(t). For convenience, we cite some useful lemmas in the discussion of our proof as follows:

Lemma 2.1

See [25]

Let u(t), a(t), b(t) be nonnegative and continuous functions defined for tR+. Assume that a(t) is non-increasing function for tR+. If

u(t)a(t)+tb(s)u(s)ds,tR+,

then

u(t)a(t)exp(tb(s)ds),tR+.

From Lemma 2.1, we can get the generalization in two dimensions.

Lemma 2.2

Let u(x,y), a(x,y), b(x,y) be nonnegative and continuous functions defined for (x,y)Δ. Assume that a(x,y) is a non-increasing function in the first variable. If

u(x,y)a(x,y)+xb(s,y)u(s,y)ds,(x,y)Δ,

then

u(x,y)a(x,y)exp(xb(s,y)ds),(x,y)Δ.

Lemma 2.3

See [26]

Assume that a0, pq0, and p0. Then, for any K>0,

aqpqpKqppa+pqpKqp.

Theorem 2.1

Suppose that the following conditions hold:

  • (i)
    ψC(R+,R+) is an increasing function and ψ(u)>0, u>0, ψ()=. ψ1 is the inverse function of ψ. φ1, φ2, φ2/φ1C(R+,R+) are increasing functions with φi(u)>0 (i=1,2) for u>0. ψ1, φi (i=1,2) are sub-multiplicative and sub-additive, that is,
    ψ1(αβ)ψ1(α)ψ1(β),ψ1(α+β)ψ1(α)+ψ1(β),φi(αβ)φi(α)φi(β),φi(α+β)φi(α)+φi(β),α,βR+;
  • (ii)

    k(x,y),a(x,y)C(Δ,R+) and k(x,y) is non-increasing in the first variable;

  • (iii)

    bi(s,t,x,y),ci(s,t,x,y),dj(s,t,x,y),ej(s,t,x,y)C(Δ2,R+) for i=1,2,,l1; j=1,2,,l2; bi, ci, dj, ej are all non-increasing functions in the last two variables;

  • (iv)

    α,αi,αjC(I1,I1), βi,βjC(I2,I2) are non-decreasing functions with α(x),αi(x),αj(x)x, βi(y),βj(y)y (i=1,2,,l1; j=1,2,,l2). h1 is a constant;

  • (v)
    the function uC(Δ,R+) satisfies the inequality
    ψ(u(x,y))k(x,y)+α(x)a(s,y)ψ(u(s,y))ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(u(s,t))+stci(ξ,η,x,y)φ2(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)ψ(u(s,t))+stej(ξ,η,x,y)ψ(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt,(x,y)Δ, 2.1

then we have

u(x,y)ψ1{[k(x,y)+W11{W21{W2[W1(B(M,N)+G1(F(M,N)))+E(x,y)]+F(x,y)}}]A(x,y)}, 2.2

where

W1(z)=czdsφ1(ψ1(s)),c>0,z(0,+), 2.3
W2(z)=czφ1(ψ1(W11(s)))φ2(ψ1(W11(s)))ds,c>0,z(0,+), 2.4
G(u)=W2(W1(uD(M,N)))W2(W1(B(M,N)+u)+E(M,N)), 2.5

on condition that W1(+)=+, W2(+)=+, and G(u) is a strictly increasing function on R+. We have

A(x,y)=exp(α(x)a(s,y)ds), 2.6
B(M,N)=i=1l1αi(M)βi(N)[bi(s,t,M,N)φ1(ψ1(k(s,t)A(s,t)))+stci(ξ,η,M,N)φ2(ψ1(k(ξ,η)A(ξ,η)))dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,M,N)k(s,t)A(s,t)+stej(ξ,η,M,N)k(ξ,η)A(ξ,η)dξdη]dsdt, 2.7
D(M,N)=j=1l2αj(M)βj(N)[dj(s,t,M,N)A(s,t)+stej(ξ,η,M,N)A(ξ,η)dξdη]dsdt, 2.8
E(M,N)=i=1l1αi(M)βi(N)bi(s,t,M,N)φ1(ψ1(A(s,t)))dsdt, 2.9
F(x,y)=i=1l1αi(x)βi(y)[stci(ξ,η,x,y)φ2(ψ1(A(ξ,η)))dξdη]dsdt. 2.10

Proof

Let

z(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(u(s,t))+stci(ξ,η,x,y)φ2(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)ψ(u(s,t))+stej(ξ,η,x,y)ψ(maxσ[ξ,hξ]u(σ,η))dξdη]dsdt. 2.11

Obviously, z(x,y) is non-increasing in each of the variables. From (2.1), we have

ψ(u(x,y))k(x,y)+z(x,y)+α(x)a(s,y)ψ(u(s,y))ds. 2.12

Applying Lemma 2.2, we obtain

ψ(u(x,y))(k(x,y)+z(x,y))A(x,y), 2.13

i.e.

u(x,y)ψ1[(k(x,y)+z(x,y))A(x,y)], 2.14

where A(x,y) is defined in (2.6), and A(x,y) is non-increasing in the first variable. So we have

maxξ[x,hx]u(ξ,y)maxξ[x,hx]ψ1[(k(ξ,y)+z(ξ,y))A(ξ,y)]ψ1[maxξ[x,hx](k(ξ,y)A(ξ,y))+maxξ[x,hx](A(ξ,y)z(ξ,y))]ψ1[k(x,y)A(x,y)+A(x,y)z(x,y)]. 2.15

By (2.11), (2.14), (2.15), and condition (i), we deduce

z(x,y)i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(ψ1(k(s,t)A(s,t))+ψ1(A(s,t))ψ1(z(s,t)))+stci(ξ,η,x,y)φ2(ψ1(k(ξ,η)A(ξ,η))+ψ1(A(ξ,η))ψ1(z(ξ,η)))dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)(k(s,t)A(s,t)+A(s,t)z(s,t))+stej(ξ,η,x,y)(k(ξ,η)A(ξ,η)+A(ξ,η)z(ξ,η))dξdη]dsdti=1l1αi(x)βi(y){bi(s,t,x,y)[φ1(ψ1(k(s,t)A(s,t)))+φ1(ψ1(A(s,t)))φ1(ψ1(z(s,t)))]+stci(ξ,η,x,y)[φ2(ψ1(k(ξ,η)A(ξ,η)))+φ2(ψ1(A(ξ,η)))φ2(ψ1(z(ξ,η)))]dξdη}dsdt+j=1l2αj(M)βj(N){dj(s,t,x,y)[k(s,t)A(s,t)+A(s,t)z(s,t)]+stej(ξ,η,x,y)[k(ξ,η)A(ξ,η)+A(ξ,η)z(ξ,η)]dξdη}dsdtB(x,y)+C(x,y)+i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(ψ1(A(s,t)))φ1(ψ1(z(s,t)))+stci(ξ,η,x,y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z(ξ,η)))dξdη]dsdtB(M,N)+C(M,N)+i=1l1αi(x)βi(y)[bi(s,t,x,y)φ1(ψ1(A(s,t)))φ1(ψ1(z(s,t)))+stci(ξ,η,x,y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z(ξ,η)))dξdη]dsdt,(x,y)[X,)×[Y,), 2.16

where B(M,N) is defined in (2.7), and C(M,N) is defined as follows:

C(M,N)=j=1l2αj(M)βj(N)[dj(s,t,M,N)A(s,t)z(s,t)+stej(ξ,η,M,N)A(ξ,η)z(ξ,η)dξdη]dsdt. 2.17

XI1, YI2, for all (x,y)[X,)×[Y,), we have

z(x,y)B(M,N)+C(M,N)+i=1l1αi(x)βi(y)[bi(s,t,X,Y)φ1(ψ1(A(s,t)))φ1(ψ1(z(s,t)))+stci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z(ξ,η)))dξdη]dsdt. 2.18

Let z1(x,y) denote the function on the right-hand side of (2.18), which is positive and non-increasing in each of the variables (x,y)[X,)×[Y,). From (2.18), we have

z(x,y)z1(x,y),(x,y)[X,)×[Y,), 2.19
z1(,y)=B(M,N)+C(M,N). 2.20

Differentiating z1(x,y) with respect to x, we have

z1(x,y)x=i=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)φ1(ψ1(A(αi(x),t)))φ1(ψ1(z(αi(x),t)))+αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z(ξ,η)))dξdη]dti=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)φ1(ψ1(A(αi(x),t)))φ1(ψ1(z1(αi(x),t)))+αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z1(ξ,η)))dξdη]dt,(x,y)[X,)×[Y,). 2.21

By the monotonicity of φ1, φ2, z1 and the property of αi, βi, from (2.21), we get

(/x)z1(x,y)φ1(ψ1(z1(x,y)))i=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)φ1(ψ1(A(αi(x),t)))+αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z1(ξ,η)))φ1(ψ1(z1(ξ,η)))dξdη]dt,(x,y)[X,)×[Y,). 2.22

Replacing x with s, and integrating it from x to ∞, we obtain

W1(z1(,y))W1(z1(x,y))i=1l1αi(x)βi(y)[bi(s,t,X,Y)φ1(ψ1(A(s,t)))+stci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))×φ2(ψ1(z1(ξ,η)))φ1(ψ1(z1(ξ,η)))dξdη]dsdt,(x,y)[X,)×[Y,), 2.23

i.e.

W1(z1(x,y))W1(z1(,y))+i=1l1αi(x)βi(y)[bi(s,t,X,Y)φ1(ψ1(A(s,t)))+stci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))φ2(ψ1(z1(ξ,η)))φ1(ψ1(z1(ξ,η)))dξdη]dsdtW1(z1(,y))+E(X,Y)+i=1l1αi(x)βi(y)[stci(ξ,η,X,Y)×φ2(ψ1(A(ξ,η)))φ2(ψ1(z1(ξ,η)))φ1(ψ1(z1(ξ,η)))dξdη]dsdt, 2.24

where E(X,Y) is defined in (2.9). Let z2(x,y) denote the function on the right-hand side of (2.24), which is positive and non-increasing in each of the variables (x,y)[X,)×[Y,). From (2.24), we have

z1(x,y)W11(z2(x,y)),(x,y)[X,)×[Y,), 2.25
z2(,y)=W1(z1(,y))+E(X,Y). 2.26

Differentiating z2(x,y) with respect to x, we have

z2(x,y)x=i=1l1αi(x)βi(y)[αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))×φ2(ψ1(z1(ξ,η)))φ1(ψ1(z1(ξ,η)))dξdη]dti=1l1αi(x)βi(y)[αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))×φ2(ψ1(W11(z2(ξ,η))))φ1(ψ1(W11(z2(ξ,η))))dξdη]dt. 2.27

By the monotonicity of φ2/φ1 and z2, from (2.27), we obtain

φ1(ψ1(W11(z2(x,y))))(/x)z2(x,y)φ2(ψ1(W11(z2(x,y))))i=1l1αi(x)βi(y)[αi(x)tci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))dξdη]dt. 2.28

Replace x with s, and integrating it from x to ∞, we get

W2(z2(x,y))W2(z2(,y))+F(x,y,X,Y), 2.29

where

F(x,y,X,Y)=i=1l1αi(x)βi(y)[stci(ξ,η,X,Y)φ2(ψ1(A(ξ,η)))dξdη]dsdt.

Obviously, F(x,y,x,y)=F(x,y), which is defined in (2.10). From (2.19), (2.20), (2.25), (2.26) and (2.29), we have

z(x,y)z1(x,y)W11(z2(x,y))W11{W21{W2[W1(B(M,N)+C(M,N))+E(X,Y)]+F(x,y,X,Y)}},(x,y)[X,)×[Y,). 2.30

Since X and Y are chosen arbitrarily, we have

z(x,y)z1(x,y)W11{W21{W2[W1(B(M,N)+C(M,N))+E(x,y)]+F(x,y)}},(x,y)[M,)×[N,). 2.31

By the definition of C(M,N) and (2.19), we get

C(M,N)z1(M,N)D(M,N)W11{W21{W2[W1(B(M,N)+C(M,N))+E(M,N)]+F(M,N)}}D(M,N), 2.32

or

W2[W1(C(M,N)D(M,N))]W2[W1(B(M,N)+C(M,N))+E(M,N)]F(M,N), 2.33

where D(M,N) is defined in (2.8). By (2.5) and the hypothesis of G, we obtain

C(M,N)G1(F(M,N)). 2.34

Combining (2.31), (2.34) and (2.14), we get the desired result. □

Corollary 2.1

Let the functions k, a, α, bi, ci, αi, βi (i=1,2,,l1), dj, ej, αj, βj (j=1,2,,l2) and u be defined as in Theorem  2.1, p is a positive constant and p1. If the function u(x,y) satisfies the inequality,

up(x,y)k(x,y)+α(x)a(s,y)up(s,y)ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)u(s,t)+stci(ξ,η,x,y)maxσ[ξ,hξ]u(σ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)up(s,t)+stej(ξ,η,x,y)maxσ[ξ,hξ]up(σ,η))dξdη]dsdt,(x,y)Δ, 2.35

then: (i) if p>1, we have

u(x,y){{k(x,y)+[[B˜(M,N)+G11(F˜(M,N))]p1p+p1pF˜(x,y)]pp1}A(x,y)}1p, 2.36

where

B˜(M,N)=i=1l1αi(M)βi(N)[bi(s,t,M,N)k1p(s,t)A1p(s,t)B˜(M,N)=+stci(ξ,η,M,N)k1p(ξ,η)A1p(ξ,η)dξdη]dsdtB˜(M,N)=+j=1l2αj(M)βj(N)[dj(s,t,M,N)k(s,t)A(s,t)B˜(M,N)=+stej(ξ,η,M,N)k(ξ,η)A(ξ,η)dξdη]dsdt, 2.37
F˜(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)A1p(s,t)F˜(x,y)=+stci(ξ,η,x,y)A1p(ξ,η)dξdη]dsdt, 2.38
G1(u)=pp1[(uD(M,N))p1p(B˜(M,N)+u)p1p], 2.39

on condition that G1(u) is a strictly increasing function on R+.

(ii) If p=1, we have

u(x,y)[k(x,y)+B(M,N)exp(F(x,y))1D(M,N)exp(F(M,N))]A(x,y), 2.40

where

D(M,N)exp(F(M,N))<1 2.41

and

B(M,N)=i=1l1αi(M)βi(N)[bi(s,t,M,N)k(s,t)A(s,t)+stci(ξ,η,M,N)k(ξ,η)A(ξ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,M,N)k(s,t)A(s,t)+stej(ξ,η,M,N)k(ξ,η)A(ξ,η)dξdη]dsdt, 2.42
F(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)A(s,t)+stci(ξ,η,x,y)A(ξ,η)dξdη]dsdt. 2.43

Proof

Inequality (2.35) followed by letting ψ(u(x,y))=up(x,y), φ1(u(x,y))=φ2(u(x,y))=u(x,y) in Theorem 2.1. Then ψ1(u(x,y))=u1p(x,y) and (u+v)1pu1p+v1p, (uv)1p=u1pv1p.

If p>1, we have

W1(z)=czduu1/p=pp1zp1ppp1cp1p,W11(z)=(p1pz+cp1p)pp1.

Applying Theorem 2.1, we can easily get (2.36).

If p=1, we have

W1(z)=czduu=lnzlnc,W11(z)=cexpz,G2(u)=W1(uD(M,N))W1(B(M,N)+u)=lnuD(M,N)(B(M,N)+u).

Obviously, G2(u) is a strictly increasing function on R+, G21(u) is the inverse of G2(u), we get

G21(u)=B(M,N)D(M,N)exp(u)1D(M,N)exp(u),D(M,N)exp(u)<1,

where B(M,N) is defined in (2.42). Applying Theorem 2.1, we can easily get (2.40). Details are omitted here. □

Theorem 2.2

Suppose that the following conditions hold:

  • (i)

    (ii)-(iv) of Theorem  2.1 are satisfied;

  • (ii)

    qi, ri are nonnegative constants with pqi, pri, i=1,2,,l1, and εj, δj are nonnegative constants with pεj, pδj, j=1,2,,l2.

If (x,y)Δ, u(x,y) satisfies the following inequality:

up(x,y)k(x,y)+α(x)a(s,y)up(s,y)ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)uqi(s,t)+stci(ξ,η,x,y)maxσ[ξ,hξ]uri(σ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)uεj(s,t)+stej(ξ,η,x,y)maxσ[ξ,hξ]uδj(σ,η))dξdη]dsdt,(x,y)Δ, 2.44

then we have

u(x,y){[k(x,y)+B1(M,N)1D1(M,N)exp(F1(x,y))]A(x,y)}1p,(x,y)Δ, 2.45

where

B1(M,N)=i=1l1αi(M)βi(N){bi(s,t,M,N)Aqip(s,t)[qipK1qippk(s,t)+pqipK1qip]+stci(ξ,η,M,N)Arip(ξ,η)×[ripK2rippk(ξ,η)+pripK2rip]dξdη}dsdt+j=1l2αj(M)βj(N){dj(s,t,M,N)Aεjp(s,t)[εjpK3εjppk(s,t)+pεjpK3εjp]+stej(ξ,η,M,N)Aδjp(ξ,η)×[δjpK4δjppk(ξ,η)+pδjpK4δjp]dξdη}dsdt, 2.46
F1(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)Aqip(s,t)qipK1qipp+stci(ξ,η,x,y)Arip(ξ,η)ripK2rippdξdη]dsdt, 2.47
D1(M,N)=j=1l2αj(M)βj(N)[dj(s,t,M,N)Aεjp(s,t)εjpK3εjppexp(F1(s,t))+stej(ξ,η,M,N)Aδjp(ξ,η)δjpK4δjppexp(F1(ξ,η))dξdη]dsdt<1. 2.48

Proof

Let

z(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)uqi(s,t)+stci(ξ,η,x,y)maxσ[ξ,hξ]uri(σ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)uεj(s,t)+stej(ξ,η,x,y)maxσ[ξ,hξ]uδj(σ,η))dξdη]dsdt. 2.49

Obviously, z(x,y) is non-increasing in every variable. From (2.44) and (2.49), we have

up(x,y)k(x,y)+z(x,y)+α(x)a(s,y)up(s,y)ds. 2.50

By Lemma 2.2, we obtain

up(x,y)[k(x,y)+z(x,y)]A(x,y),(x,y)[M,)×[N,), 2.51

where A(x,y) is defined in (2.6). Then we get

u(x,y)[(k(x,y)+z(x,y))A(x,y)]1p,(x,y)[M,)×[N,). 2.52

By Lemma 2.3, we have

uqi(x,y)[(k(x,y)+z(x,y))A(x,y)]qipuqi(x,y)Aqip(x,y)[qipK1qipp(k(x,y)+z(x,y))+pqipK1qip]uqi(x,y)=Aqip(x,y)[qipK1qippk(x,y)+pqipK1qip+qipK1qippz(x,y)],maxξ[x,hx]uri(ξ,y)maxξ[x,hx][(k(ξ,y)+z(ξ,y))A(ξ,y)]ripmaxξ[x,hx]uri(ξ,y)[(maxξ[x,hx]k(ξ,y)+maxξ[x,hx]z(ξ,y))maxξ[x,hx]A(ξ,y)]ripmaxξ[x,hx]uri(ξ,y)Arip(x,y)[ripK2ripp(k(x,y)+z(x,y))+pripK2rip]maxξ[x,hx]uri(ξ,y)=Arip(x,y)[ripK2rippk(x,y)+pripK2rip+ripK2rippz(x,y)],uεj(x,y)Aεjp(x,y)[εjpK3εjppk(x,y)+pεjpK3εjp+εjpK3εjppz(x,y)],maxξ[x,hx]uδj(ξ,y)Aδjp(x,y)[δjpK4δjppk(x,y)+pδjpK4δjp+δjpK4δjppz(x,y)]. 2.53

Combining (2.53) and (2.49), we have

z(x,y)i=1l1αi(x)βi(y){bi(s,t,x,y)Aqip(s,t)[qipK1qippk(s,t)+pqipK1qip+qipK1qippz(s,t)]+stci(ξ,η,x,y)Arip(ξ,η)[ripK2rippk(ξ,η)+pripK2rip+ripK2rippz(ξ,η)]dξdη}dsdt+j=1l2αj(M)βj(N){dj(s,t,x,y)Aεjp(s,t)[εjpK3εjppk(s,t)+pεjpK3εjp+εjpK3εjppz(s,t)]+stej(ξ,η,x,y)Aδjp(ξ,η)[δjpK4δjppk(ξ,η)+pδjpK4δjp+δjpK4δjppz(ξ,η)]dξdη}dsdt=B1(x,y)+C1(x,y)+i=1l1αi(x)βi(y)[bi(s,t,x,y)Aqip(s,t)qipK1qippz(s,t)+stci(ξ,η,x,y)Arip(ξ,η)ripK2rippz(ξ,η)dξdη]dsdtB1(M,N)+C1(M,N)+i=1l1αi(x)βi(y)[bi(s,t,x,y)Aqip(s,t)qipK1qippz(s,t)+stci(ξ,η,x,y)Arip(ξ,η)ripK2rippz(ξ,η)dξdη]dsdt,(x,y)[M,)×[N,), 2.54

where B1(M,N) is defined in (2.46), C1(M,N) is defined as follows:

C1(M,N)=j=1l2αj(M)βj(N)[dj(s,t,M,N)Aεjp(s,t)εjpK3εjppz(s,t)+stej(ξ,η,M,N)Aδjp(ξ,η)δjpK4δjppz(ξ,η)dξdη]dsdt. 2.55

XI1, YI2, for all (x,y)[X,)×[Y,), we have

z(x,y)B1(M,N)+C1(M,N)+i=1l1αi(x)βi(y)[bi(s,t,X,Y)Aqip(s,t)qipK1qippz(s,t)+stci(ξ,η,X,Y)Arip(ξ,η)ripK2rippz(ξ,η)dξdη]dsdt. 2.56

Let z1(x,y) denote the function on the right-hand side of (2.56), which is positive and non-increasing in each of the variables (x,y)[X,)×[Y,). From (2.56), we have

z(x,y)z1(x,y),(x,y)[X,)×[Y,), 2.57
z1(,y)=B1(M,N)+C1(M,N). 2.58

Differentiating z1(x,y) with respect to x, we have

z1(x,y)x=i=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)Aqip(αi(x),t)qipK1qippz(αi(x),t)+αi(x)tci(ξ,η,X,Y)Arip(ξ,η)ripK2rippz(ξ,η)dξdη]dti=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)Aqip(αi(x),t)qipK1qippz1(αi(x),t)+αi(x)tci(ξ,η,X,Y)Arip(ξ,η)ripK2rippz1(ξ,η)dξdη]dt. 2.59

Dividing both sides of (2.59) by z1(x,y), noticing that z1(x,y) is non-increasing in each variable, we have

(/x)z1(x,y)z1(x,y)i=1l1αi(x)βi(y)[bi(αi(x),t,X,Y)Aqip(αi(x),t)qipK1qipp+αi(x)tci(ξ,η,X,Y)Arip(ξ,η)ripK2rippdξdη]dt,(x,y)[X,)×[Y,). 2.60

Replace x with s, and integrate it from x to ∞, we get

z1(x,y)z1(,y)exp(F1(x,y,X,Y)),(x,y)[X,)×[Y,), 2.61

where

F1(x,y,X,Y)=i=1l1αi(x)βi(y)[bi(s,t,X,Y)Aqip(s,t)qipK1qipp+stci(ξ,η,X,Y)Arip(ξ,η)ripK2rippdξdη]dsdt. 2.62

It is obvious that F1(x,y,x,y)=F1(x,y), which is defined in (2.47). From (2.57), (2.58) and (2.61), we get

z(x,y)[B1(M,N)+C1(M,N)]exp(F1(x,y,X,Y)),(x,y)[X,)×[Y,). 2.63

Due to the fact that X, Y are chosen arbitrarily, we have

z(x,y)[B1(M,N)+C1(M,N)]exp(F1(x,y)),(x,y)[M,)×[N,). 2.64

By the definition of C1(M,N), we have

B1(M,N)+C1(M,N)B1(M,N)+j=1l2αj(M)βj(N)[dj(s,t,M,N)Aεjp(s,t)εjpK3εjpp×[B1(M,N)+C1(M,N)]exp(F1(s,t))+stej(ξ,η,M,N)Aδjp(ξ,η)δjpK4δjpp×[B1(M,N)+C1(M,N)]exp(F1(ξ,η))dξdη]dsdtB1(M,N)+[B1(M,N)+C1(M,N)]D1(M,N), 2.65

where D1(M,N) is defined in (2.48). Then, according to D1(M,N)<1, we have

B1(M,N)+C1(M,N)B1(M,N)1D1(M,N). 2.66

From (2.64) and (2.66), we get

z(x,y)B1(M,N)1D1(M,N)exp(F1(x,y)),(x,y)[M,)×[N,). 2.67

Combining (2.52) and (2.67), we obtain the desired result. □

Remark 2.1

If qi=ri=1 (i=1,2,,l1), εj=δj=p (j=1,2,,l2), the inequality (2.44) becomes (2.35), but the proof of Theorem 2.2 is different from that of Corollary 2.1.

Corollary 2.2

Let k, a, α, αi, βi, bi, ci (i=1,2,,l1), αj, βj, dj, ej (i=1,2,,l2) be defined as in Theorem  2.1, then q, r are nonnegative constants with 0q2, 0r2. For (x,y)Δ, u(x,y) satisfies the following inequality:

u2(x,y)k(x,y)+α(x)a(s,y)u2(s,y)ds+i=1l1αi(x)βi(y)[bi(s,t,x,y)uq(s,t)+stci(ξ,η,x,y)maxσ[ξ,hξ]ur(σ,η)dξdη]dsdt+j=1l2αj(M)βj(N)[dj(s,t,x,y)u(s,t)+stej(ξ,η,x,y)maxσ[ξ,hξ]u(σ,η))dξdη]dsdt,(x,y)Δ, 2.68

then we have

u(x,y){[k(x,y)+B2(M,N)1D2(M,N)exp(F2(x,y))]A(x,y)}12, 2.69

where

F2(x,y)=i=1l1αi(x)βi(y)[bi(s,t,x,y)Aq2(s,t)q2K1q22+stci(ξ,η,x,y)Ar2(ξ,η)r2K2r22dξdη]dsdt, 2.70
B2(M,N)=i=1l1αi(M)βi(N){bi(s,t,M,N)Aq2(s,t)[q2K1q22k(s,t)+2q2K1q2]+stci(ξ,η,M,N)Ar2(ξ,η)[r2K2r22k(ξ,η)+2r2K2r2]dξdη}dsdt+j=1l2αj(M)βj(N){dj(s,t,M,N)A12(s,t)[12K312k(s,t)+12K312]+stej(ξ,η,M,N)A12(ξ,η)[12K412k(ξ,η)+12K412]dξdη}dsdt, 2.71
D2(M,N)=j=1l2αj(M)βj(N)[dj(s,t,M,N)A12(s,t)12K312exp(F2(s,t))+stej(ξ,η,M,N)A12(ξ,η)12K412exp(F2(ξ,η))dξdη]dsdt<1. 2.72

Proof

Inequality (2.68) follows by inequality (2.44) with p=2, qi=q, ri=r (i=1,2,,l1), εj=δj=1 (j=1,2,,l2). Then, applying Theorem 2.2, we can easily get (2.69). Details are omitted here. □

Remark 2.2

As one can see, the established results above mainly deal with Volterra-Fredholm type integral inequalities with maxima in two variables. And they are different from the results presented in [14, 21, 23]. In Theorem 2.1, in the case of one variable, if we take k(x,y)=k, a(x,y)=0, l1=l2=1, b1(s,t,x,y)=d1(s,t,x,y)=h1(s), c1(ξ,η,x,y)=e1(ξ,η,x,y)=h2(ξ), ψ(u)=φ1(u), ψ(u)=φ2(u) in the second iterated integral, orderly, we will get the inequality that is similar to inequality (1.5). If the above conditions are satisfied in two dimensions and φ2(maxσ[ξ,hξ]u(σ,η))=φ2(u(ξ,η)), we get analogs of the inequality (1.4). And if we take l1=2, l2=0, bi(s,t,x,y)=fi(s,t), ci(ξ,η,x,y)=0 in Theorem 2.1, inequality (2.1) reduces to (1.3).

Applications in the integral equation

In this section, we apply our results in Theorem 2.1 and Theorem 2.2 to study the retarded Volterra-Fredholm type integral equations with maxima in two variables. Some results on the boundedness of their solutions are presented, which demonstrate that our results can be used to investigate the qualitative properties of solutions of some integral equations.

Example

We consider the retarded Volterra-Fredholm type integral equation of the form

ψ(v(x,y))=g1(x,y)+xg2(s,y)ψ(v(s+ρ(s),y))ds+i=1l1xyF1i(s,t,x,y,v(s+ρi(s),t+γi(t)),stF2i(s,t,x,y,maxσ[ξ+ρi(ξ),h(ξ+ρi(ξ))]v(σ,η+γi(η)))dξdη)dsdt+j=1l2MNG1j(s,t,x,y,v(s+ρj(s),t+γj(t)),stG2j(s,t,x,y,maxσ[ξ+ρj(ξ),h(ξ+ρj(ξ))]v(σ,η+γj(η)))dξdη)dsdt,(x,y)Δ. 3.1

Suppose that the following conditions hold:

  • (i)

    g1(x,y), g2(x,y), v(x,y)C(Δ,R);

  • (ii)
    x+ρ(x), x+ρi(x), x+ρj(x)C1(I1,I1) and y+γi(y), y+γj(y)C1(I2,I2) are strictly increasing with
    ρ(M)=ρi(M)=ρj(M)=0,γi(N)=γj(N)=0,ρ(x)0,ρi(x)0,ρj(x)0for xM,γi(y)0,γj(y)0for yN,ρ(x)>1,ρi(x)>1,ρj(x)>1,γi(y)>1,γj(y)>1(i=1,2,,l1;j=1,2,,l2);
  • (iii)

    F1i,G1jC(Δ2×R2,R), F2i,G2jC(Δ2×R,R) (i=1,2,,l1; j=1,2,,l2).

Let α(x)=x+ρ(x), αi(x)=x+ρi(x), αj(x)=x+ρj(x), βi(y)=y+γi(y), βj(y)=y+γj(y). Then α, αi, αj, βi, βj satisfy the condition (iv) of Theorem 2.1.

Theorem 3.1

In Eq. (3.1), suppose that the following conditions hold:

ψ(v(x,y))=v(x,y),|g1(x,y)|k(x,y),|g2(x,y)|a(x,y),|F1i(s,t,x,y,u,v)|bi(s,t,x,y)φ1(|u|)+|v|,|F2i(s,t,x,y,u)|ci(s,t,x,y)φ2(|u|),i=1,2,,l1,|G1j(s,t,x,y,u,v)|dj(s,t,x,y)|u|+|v|,|G2j(s,t,x,y,u)|ej(s,t,x,y)|u|,j=1,2,,l2, 3.2

where k, a, bi, ci, dj, ej, φ1, φ2 are defined in Theorem  2.1. Assume that the function G3(u)=W2(W1(uD3(M,N)))W2(W1(B3(M,N)+u)+E3(M,N)) is increasing. Then we have the following estimate:

|v(x,y)|[k(x,y)+W11{W21{W2[W1(B3(M,N)+G31(F3(M,N)))+E3(x,y)]+F3(x,y)}}]A1(x,y),(x,y)Δ, 3.3

where

A1(x,y)=exp(α(x)M1a(α1(s),y)ds), 3.4
B3(M,N)=i=1l1αi(M)βi(N)M1iM2i[bi(αi1(s),βi1(t),M,N)φ1(k(s,t)A1(s,t))+stM1iM2ici(αi1(ξ),βi1(η),M,N)φ2(k(ξ,η)A1(ξ,η))dξdη]dsdt+j=1l2αj(M)βj(N)M1jM2j[dj(αj1(s),βj1(t),M,N)k(s,t)A1(s,t)+stM1jM2jej(αj1(ξ),βj1(η),M,N)k(ξ,η)A1(ξ,η)dξdη]dsdt, 3.5
D3(M,N)=j=1l2αj(M)βj(N)M1jM2j[dj(αj1(s),βj1(t),M,N)A1(s,t)+stM1jM2jej(αj1(ξ),βj1(η),M,N)A1(ξ,η)dξdη]dsdt, 3.6
E3(M,N)=i=1l1αi(M)βi(N)M1iM2ibi(αi1(s),βi1(t),M,N)φ1(A1(s,t))dsdt, 3.7
F3(x,y)=i=1l1αi(x)βi(y)M1i2M2i2×[stci(αi1(ξ),βi1(η),x,y)φ2(A1(ξ,η)dξdη]dsdt, 3.8
M1=maxxI11α(α1(x))<,M1i=maxxI11αi(αi1(x))<,M2i=maxyI21βi(βi1(y))<,i=1,2,,l1;M1j=maxxI11αj(αj1(x))<,M2j=maxyI21βj(βj1(y))<,j=1,2,,l2; 3.9

W1, W2 are defined in Theorem  2.1.

Proof

By applying the conditions (3.2) to (3.1), we have

|v(x,y)|k(x,y)+xa(s,y)|v(s+ρ(s),y)|ds+i=1l1xy[bi(s,t,x,y)φ1(|v(s+ρi(s),t+γi(t))|)+stci(ξ,η,x,y)φ2(|maxσ[ξ+ρi(ξ),h(ξ+ρi(ξ))]v(σ,η+γi(η))|)dξdη]dsdt+j=1l2MN[dj(s,t,x,y)|v(s+ρj(s),t+γj(t))|+stej(ξ,η,x,y)|maxσ[ξ+ρj(ξ),h(ξ+ρj(ξ))]v(σ,η+γj(η))|dξdη]dsdtk(x,y)+α(x)a(α1(s),y)|v(s,y)|1α(α1(s))ds+i=1l1αi(x)βi(y)[bi(αi1(s),βi1(t),x,y)φ1(|v(s,t)|)+stci(αi1(ξ),βi1(η),x,y)φ2(maxσ[ξ,hξ]|v(σ,η)|)×1αi(αi1(ξ))1βi(βi1(η))dξdη]1αi(αi1(s))1βi(βi1(t))dsdt+j=1l2αj(M)βj(N)[dj(αj1(s),βj1(t),x,y)|v(s,t)|+stej(αj1(ξ),βj1(η),x,y)×maxσ[ξ,hξ]|v(σ,η)|1αj(αj1(ξ))1βj(βj1(η))dξdη]1αj(αj1(s))1βj(βj1(t))dsdtk(x,y)+α(x)M1a(α1(s),y)|v(s,y)|ds+i=1l1αi(x)βi(y)[M1iM2ibi(αi1(s),βi1(t),x,y)φ1(|v(s,t)|)+stM1i2M2i2ci(αi1(ξ),βi1(η),x,y)φ2(maxσ[ξ,hξ]|v(σ,η)|)dξdη]dsdt+j=1l2αj(M)βj(N)[M1jM2jdj(αj1(s),βj1(t),x,y)|v(s,t)|+stM1j2M2j2ej(αj1(ξ),βj1(η),x,y)×maxσ[ξ,hξ]|v(σ,η)|dξdη]dsdt, 3.10

for (x,y)Δ, where M1, M1i, M2i (i=1,2,,l1), M1j, M2j (j=1,2,,l2) are defined in (3.9). Applying the results of Theorem 2.1 to (3.10) with ψ(u)=u, a(s,y)=M1a(α1(s),y), bi(s,t,x,y)=M1iM2ibi(αi1(s),βi1(t),x,y), ci(ξ,η,x,y)=M1i2M2i2ci(αi1(ξ),βi1(η),x,y), dj(s,t,x,y)=M1jM2jdj(αj1(s),βj1(t),x,y), ej(ξ,η,x,y)=M1j2M2j2ej(αj1(ξ),βj1(η),x,y), we obtain the desired estimation (3.3). □

Theorem 3.2

In equation (3.1), suppose that the following conditions hold:

ψ(v(x,y))=vp(x,y),|g1(x,y)|k(x,y),|g2(x,y)|a(x,y),|F1i(s,t,x,y,u,v)|bi(s,t,x,y)|u|qi+|v|,|F2i(s,t,x,y,u)|ci(s,t,x,y)|u|ri,i=1,2,,l1,|G1j(s,t,x,y,u,v)|dj(s,t,x,y)|u|εj+|v|,|G2j(s,t,x,y,u)|ej(s,t,x,y)|u|δj,j=1,2,,l2, 3.11

where p, qi, ri, εj, δj, bi, ci, dj, ej (i=1,2,,l1; j=1,2,,l2) are defined as in Theorem  2.2. Then we have the following estimate:

|v(x,y)|{[k(x,y)+B4(M,N)1D4(M,N)exp(F4(x,y))]A1(x,y)}1p, 3.12

where

B4(M,N)=i=1l1αi(M)βi(N)M1iM2i{bi(αi1(s),βi1(t),M,N)A1qip(s,t)×[qipK1qippk(s,t)+pqipK1qip]+stM1iM2ici(αi1(ξ),βi1(η),M,N)×A1rip(ξ,η)[ripK2rippk(ξ,η)+pripK2rip]dξdη}dsdt+j=1l2αj(M)βj(N)M1jM2j{dj(αj1(s),βj1(t),M,N)A1εjp(s,t)×[εjpK3εjppk(s,t)+pεjpK3εjp]+stM1jM2jej(αj1(ξ),βj1(η),M,N)×A1δjp(ξ,η)[δjpK4δjppk(ξ,η)+pδjpK4δjp]dξdη}dsdt, 3.13
D4(M,N)=j=1l2αj(M)βj(N)M1jM2j×[dj(αj1(s),βj1(t),M,N)A1εjp(s,t)εjpK3εjppexp(F4(s,t))+stM1jM2jej(αj1(ξ),βj1(η),M,N)×A1δjp(ξ,η)δjpK4δjppexp(F4(ξ,η))dξdη]dsdt<1, 3.14
F4(x,y)=i=1l1αi(x)βi(y)M1iM2i[bi(αi1(s),βi1(t),x,y)A1qip(s,t)qipK1qipp+stM1iM2ici(αi1(ξ),βi1(η),x,y)×A1rip(ξ,η)ripK2rippdξdη]dsdt. 3.15

Proof

Applying the conditions of (3.11) to (3.1), we have

|v(x,y)|pk(x,y)+xa(s,y)|v(s+ρ(s),y)|pds+i=1l1xy[bi(s,t,x,y)|v(s+ρi(s),t+γi(t))|qi+stci(ξ,η,x,y)|maxσ[ξ+ρi(ξ),h(ξ+ρi(ξ))]v(σ,η+γi(η))|ridξdη]dsdt+j=1l2MN[dj(s,t,x,y)|v(s+ρj(s),t+γj(t))|εj+stej(ξ,η,x,y)|maxσ[ξ+ρj(ξ),h(ξ+ρj(ξ))]v(σ,η+γj(η))|δjdξdη]dsdtk(x,y)+α(x)a(α1(s),y)|v(s,y)|p1α(α1(s))ds+i=1l1αi(x)βi(y)[bi(αi1(s),βi1(t),x,y)|v(s,t)|qi+stci(αi1(ξ),βi1(η),x,y)×maxσ[ξ,hξ]|v(σ,η)|ri1αi(αi1(ξ))1βi(βi1(η))dξdη]1αi(αi1(s))1βi(βi1(t))dsdt+j=1l2αj(M)βj(N)[dj(αj1(s),βj1(t),x,y)|v(s,t)|εj+stej(αj1(ξ),βj1(η),x,y)×maxσ[ξ,hξ]|v(σ,η)|δj1αj(αj1(ξ))1βj(βj1(η))dξdη]×1αj(αj1(s))1βj(βj1(t))dsdtk(x,y)+α(x)M1a(α1(s),y)|v(s,y)|pds+i=1l1αi(x)βi(y)[M1iM2ibi(αi1(s),βi1(t),x,y)|v(s,t)|qi+stM1i2M2i2ci(αi1(ξ),βi1(η),x,y)maxσ[ξ,hξ]|v(σ,η)|ridξdη]dsdt+j=1l2αj(M)βj(N)[M1jM2jdj(αj1(s),βj1(t),x,y)|v(s,t)|εj+stM1j2M2j2ej(αj1(ξ),βj1(η),x,y)×maxσ[ξ,hξ]|v(σ,η)|δjdξdη]dsdt, 3.16

for (x,y)Δ, where M1, M1i, M2i (i=1,2,,l1), M1j, M2j (j=1,2,,l2) are defined in (3.9). Applying the results of Theorem 2.2 to (3.16) with a(s,y)=M1a(α1(s),y), bi(s,t,x,y)=M1iM2ibi(αi1(s),βi1(t),x,y), ci(ξ,η,x,y)=M1i2M2i2ci(αi1(ξ),βi1(η),x,y), dj(s,t,x,y)=M1jM2jdj(αj1(s),βj1(t),x,y), ej(ξ,η,x,y)=M1j2M2j2ej(αj1(ξ),βj1(η),x,y), we obtain the desired estimation (3.12). □

Conclusion

In this paper, we established several new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables in Theorem 2.1 and Theorem 2.2, and gave their specific cases in Corollary 2.1 and Corollary 2.2, respectively, which can be used in the analysis of the qualitative properties to solutions of integral equations with maxima. In Theorem 3.1 and Theorem 3.2, we also presented the applications to research the boundedness of solutions of retarded nonlinear Volterra-Fredholm type integral equations.

Using our method, one can further study the integral inequality with more dimensions.

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

This research is supported by National Science Foundation of China (11671227).

Footnotes

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Authors’ contributions

RX proved parts of the results in Section 2 and participated in Section 3 - Applications. XM carried out the generalized weakly singular integral inequalities and completed part of the proof. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Gronwall TH. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 1919;20(4):292–296. doi: 10.2307/1967124. [DOI] [Google Scholar]
  • 2.Bellman R. The stability of solutions of linear differential equations. Duke Math. J. 1943;10:643–647. doi: 10.1215/S0012-7094-43-01059-2. [DOI] [Google Scholar]
  • 3.Bihari I. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hung. 1956;7:81–94. doi: 10.1007/BF02022967. [DOI] [Google Scholar]
  • 4.Banov D, Simeonov P. Integral Inequalities and Applications. Dordrecht: Kluwer Academic; 1992. [Google Scholar]
  • 5.Pachpatte BG. Inequalities for Differential and Integral Equations. San Diego: Academic Press; 1998. [Google Scholar]
  • 6.Pachpatte BG. On a certain retarded integral inequality and its applications. J. Inequal. Pure Appl. Math. 2004;5(1):2–22. [Google Scholar]
  • 7.Pachpatte BG. Explicit bounds on Gamidov type integral inequalities. Tamkang J. Math. 2006;37(1):1–9. [Google Scholar]
  • 8.Ma QH, Pečarić J. On certain new nonlinear retarded integral inequalities for functions in two variables and their applications. J. Korean Math. Soc. 2008;45(1):393–407. doi: 10.4134/JKMS.2008.45.1.121. [DOI] [Google Scholar]
  • 9.Cheng KL, Guo CX, Tang M. Some nonlinear Gronwall-Bellman-Gamidov integral inequalities and their weakly singular analogues with applications. Abstr. Appl. Anal. 2014;2014 [Google Scholar]
  • 10.Cheng KL, Guo CX. New explicit bounds on Gamidov type integral inequalities for functions in two variables and their applications. Abstr. Appl. Anal. 2014;2014 [Google Scholar]
  • 11.Lipovan O. A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 2000;7(1):7–11. [Google Scholar]
  • 12.Agarwal RP, Deng S, Zhang W. Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 2005;165(3):599–612. [Google Scholar]
  • 13.Xu R, Meng F, Song C. On some integral inequalities on time scales and their applications. J. Inequal. Appl. 2010;2010 doi: 10.1155/2010/464976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wang WS. A general form of retarded integral inequality with two variables and its application. J. Syst. Sci. Math. Sci. 2010;30(3):425–432. [Google Scholar]
  • 15.Agarwal RP, Ryoo CS, Kim YH. New integral inequalities for iterated integrals with applications. J. Inequal. Appl. 2007;2007 doi: 10.1155/2007/24385. [DOI] [Google Scholar]
  • 16.Wang T, Xu R. Some integral inequalities in two independent variables on time scales. J. Math. Inequal. 2012;6(1):107–118. doi: 10.7153/jmi-06-11. [DOI] [Google Scholar]
  • 17.Wang T, Xu R. Bounds for some new integral inequalities with delay on time scales. J. Math. Inequal. 2012;6(1):1–12. [Google Scholar]
  • 18.Abdeldaim A. On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Appl. Math. Comput. 2011;217(20):7887–7899. [Google Scholar]
  • 19.Ma QH, Pečarić J. Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal., Theory Methods Appl. 2008;69(2):393–407. doi: 10.1016/j.na.2007.05.027. [DOI] [Google Scholar]
  • 20.Hou ZY, Wang WS. A class of nonlinear retarded Volterra-Fredholm type integral inequality and its application. Math. Pract. Theory. 2014;44 [Google Scholar]
  • 21.Lu YS, Wang WS, Zhou XL, Huang Y. Generalized nonlinear Volterra-Fredholm type integral inequality with two variables. J. Appl. Math. 2014;2014 [Google Scholar]
  • 22.Hou ZY, Wang WS. A class of nonlinear Volterra-Fredholm type integral inequality with variable lower limit and its application. J. Southwest China Normal Univ. 2016;41 [Google Scholar]
  • 23.Huang CM, Wang WS. A class of nonlinear Volterra-Fredholm type integral inequalities with maxima. J. Sichuan Normal Univ. 2016;39 [Google Scholar]
  • 24.Meng F, Shao J. Some new Volterra-Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 2013;223(3):444–451. [Google Scholar]
  • 25.Pachpatte BG. On some fundamental integral inequalities and their discrete analogues. J. Inequal. Pure Appl. Math. 2001;13 [Google Scholar]
  • 26.Jiang FC, Meng FW. Explicit bounds on some new nonlinear integral inequality with delay. J. Comput. Appl. Math. 2007;205:479–487. doi: 10.1016/j.cam.2006.05.038. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES