Skip to main content
Aging (Albany NY) logoLink to Aging (Albany NY)
. 2017 Jul 7;9(7):1844–1846. doi: 10.18632/aging.101260

Correction: The complex genetics of gait speed: genome-wide meta-analysis approach

Dan Ben-Avraham 1,#, David Karasik 2,3,#, Joe Verghese 4,#, Kathryn L Lunetta 5,6, Jennifer A Smith 7, John D Eicher 5,8, Rotem Vered 9, Joris Deelen 10,11, Alice M Arnold 12, Aron S Buchman 13, Toshiko Tanaka 14, Jessica D Faul 15, Maria Nethander 16, Myriam Fornage 17, Hieab H Adams 18,19, Amy M Matteini 20, Michele L Callisaya 21,22, Albert V Smith 23, Lei Yu 13, Philip L De Jager 24, Denis A Evans 25, Vilmundur Gudnason 23, Albert Hofman 18,26, Alison Pattie 27, Janie Corley 27, Lenore J Launer 28, Davis S Knopman 29, Neeta Parimi 30, Stephen T Turner 31, Stefania Bandinelli 32, Marian Beekman 10, Danielle Gutman 48, Lital Sharvit 48, Simon P Mooijaart 33, David C Liewald 34, Jeanine J Houwing-Duistermaat 35, Claes Ohlsson 36, Matthijs Moed 10, Vincent J Verlinden 18, Dan Mellström 36, Jos N van der Geest 37, Magnus Karlsson 38, Dena Hernandez 39, Rebekah McWhirter 22, Yongmei Liu 40, Russell Thomson 22,41, Gregory J Tranah 30, Andre G Uitterlinden 42, David R Weir 15, Wei Zhao 7, John M Starr 34,43, Andrew D Johnson 5,8, M Arfan Ikram 18,19, David A Bennett 13, Steven R Cummings 30, Ian J Deary 27,34, Tamara B Harris 28, Sharon L R Kardia 7, Thomas H Mosley 44, Velandai K Srikanth 21,22, Beverly G Windham 44, Ann B Newman 45, Jeremy D Walston 20, Gail Davies 27,34, Daniel S Evans 30, Eline P Slagboom 10, Luigi Ferrucci 14, Douglas P Kiel 2,46, Joanne M Murabito 5,47, Gil Atzmon 1,48
PMCID: PMC5559176  PMID: 28696945

Original article: Aging (Albany NY) 2017; 9(1): 209-246.

PMCID: PMC 5310665 PMID: 28077804 DOI: 10.18632/aging.101151

Please check the link to the original paper: http://www.aging-us.com/article/101151/text

Present: Due to proofreading oversight, there is a mistake (marked in bold) in the last paragraph before DISCUSSION on page 219

Applying HaploReg v4.1 analysis to the 536 variants resulted in 9 categories (Supplementary Table 8): miscRNA (1 variant); snoRNA (2 variants); microRNA (4 variants); snRNA (9 variants); pseudogenes (14 variants); sequencing in progress (43 variants); LINC RNA (86 variants); and 372 variants within protein coding genes. In addition, some variants annotate to the same gene resulting in a total of 139 genes (protein-coding or non-coding). Of those genes, 6 are exceptionally long, containing over a million base-pairs, the longest of which is PTPRD coded by 2298477bp. The shortest genes are the ones coding for micro (MIR3143) or small nuclear (U7) RNAs at 63bp each. There is only partial information regarding the chromatin state of each variant. However, from the information gathered in the analysis we observed 14 transcription start sites and 245 enhancers (Supplementary Table 8).

Corrected: The corrected text is provided below.

Applying HaploReg v4.1 analysis to the 536 variants resulted in 9 categories (Supplementary Table 8): miscRNA (1 variant); snoRNA (2 variants); microRNA (4 variants); snRNA (9 variants); pseudogenes (14 variants); sequencing in progress (43 variants); LINC RNA (86 variants); and 372 variants within protein coding genes. In addition, some variants annotate to the same gene resulting in a total of 139 genes (protein-coding or non-coding). Of those genes, 6 are exceptionally long, containing over a million base-pairs, the longest of which is PTPRT coded by1117219bp. The shortest genes are the ones coding for micro (MIR3143) or small nuclear (U7) RNAs at 63bp each. There is only partial information regarding the chromatin state of each variant. However, from the information gathered in the analysis we observed 14 transcription start sites and 245 enhancers (Supplementary Table 8).

The authors sincerely apologize for this error.


Articles from Aging (Albany NY) are provided here courtesy of Impact Journals, LLC

RESOURCES