Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jun 22;28(4):435–448. doi: 10.1007/s12264-012-1246-2

Using optogenetics to translate the “inflammatory dialogue” between heart and brain in the context of stress

Jinbo Cheng 1,2, Jie Zhang 2, Caiyi Lu 1,, Liping Wang 2,
PMCID: PMC5560261  PMID: 22833041

Abstract

Inflammatory processes are an integral part of the stress response and are likely to result from a programmed adaptation that is vital to the organism’s survival and well-being. The whole inflammatory response is mediated by largely overlapping circuits in the limbic forebrain, hypothalamus and brainstem, but is also under the control of the neuroendocrine and autonomic nervous systems. Genetically predisposed individuals who fail to tune the respective contributions of the two systems in accordance with stressor modality and intensity after adverse experiences can be at risk for stress-related psychiatric disorders and cardiovascular diseases. Altered glucocorticoid (GC) homeostasis due to GC resistance leads to the failure of neural and negative feedback regulation of the hypothalamic-pituitary-adrenal axis during chronic inflammation, and this might be the mechanism underlying the ensuing brain and heart diseases and the high prevalence of co-morbidity between the two systems. By the combined use of light and genetically-encoded light-sensitive proteins, optogenetics allows cell-type-specific, fast (millisecond-scale) control of precisely defined events in biological systems. This method is an important breakthrough to explore the causality between neural activity patterns and behavioral profiles relevant to anxiety, depression, autism and schizophrenia. Optogenetics also helps to understand the “inflammatory dialogue”, the inflammatory processes in psychiatric disorders and cardiovascular diseases, shared by heart and brain in the context of stress.

Keywords: stress, inflammatory processes, glucocorticoid resistance, psychoneuroimmunology, psychiatric disorders, cardiovascular disease, neuronal circuits, optogenetics

Contributor Information

Caiyi Lu, Phone: +86-755-86392218, FAX: +86-755-86392299, Email: cylu2000@sina.com.

Liping Wang, Phone: +86-755-86392218, FAX: +86-755-86392299, Email: lp.wang@siat.ac.cn.

References

  • [1].Kemeny M.E., Schedlowski M. Understanding the interaction between psychosocial stress and immune-related diseases: A stepwise progression. Brain Behav Immun. 2007;21:1009–1018. doi: 10.1016/j.bbi.2007.07.010. [DOI] [PubMed] [Google Scholar]
  • [2].Ulrich-Lai Y.M., Herman J.P. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409. doi: 10.1038/nrn2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Joels M., Baram T.Z. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10:459–466. doi: 10.1038/nrn2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Paul H. B. Stress and the inflammatory response: A review of neurogenic inflammation. Brain Behav Immun. 2002;16:622–653. doi: 10.1016/S0889-1591(02)00021-1. [DOI] [PubMed] [Google Scholar]
  • [5].Khansari D.N., Murgo A.J., Faith R.E. Effects of stress on the immune system. Immunol Today. 1990;11:170–175. doi: 10.1016/0167-5699(90)90069-L. [DOI] [PubMed] [Google Scholar]
  • [6].Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–581. doi: 10.1038/ni1078. [DOI] [PubMed] [Google Scholar]
  • [7].Garcia-Bueno B., Caso J.R., Leza J.C. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev. 2008;32:1136–1151. doi: 10.1016/j.neubiorev.2008.04.001. [DOI] [PubMed] [Google Scholar]
  • [8].Johnson J.D., Campisi J., Sharkey C.M., Kennedy S.L., Nickerson M., Greenwood B.N., et al. Catecholamines mediate stress-induced increa ses in peripheral and central inflammatory cytokines. Neuroscience. 2005;135:1295–1307. doi: 10.1016/j.neuroscience.2005.06.090. [DOI] [PubMed] [Google Scholar]
  • [9].Lucas S.-M., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:S232–S240. doi: 10.1038/sj.bjp.0706400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Marques A.H., Silverman M.N., Sternberg E.M. Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics. Ann N Y Acad Sci. 2009;1179:1–18. doi: 10.1111/j.1749-6632.2009.04987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Raison C.L., Miller A.H. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160:1554–1565. doi: 10.1176/appi.ajp.160.9.1554. [DOI] [PubMed] [Google Scholar]
  • [12].Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 2009, 3. [DOI] [PMC free article] [PubMed]
  • [13].Miller G.E., Chen E., Fok A.K., Walker H., Lim A., Nicholls E.F., et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A. 2009;106:14716–14721. doi: 10.1073/pnas.0902971106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Cohen S., Janicki-Deverts D., Miller G.E. Psychological stress and disease. JAMA. 2007;298:1685–1687. doi: 10.1001/jama.298.14.1685. [DOI] [PubMed] [Google Scholar]
  • [15].de Kloet E.R., Joels M., Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–475. doi: 10.1038/nrn1683. [DOI] [PubMed] [Google Scholar]
  • [16].Pace T.W., Mletzko T.C., Alagbe O., Musselman D.L., Nemeroff C.B., Miller A.H., et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163:1630–1633. doi: 10.1176/appi.ajp.163.9.1630. [DOI] [PubMed] [Google Scholar]
  • [17].Irwin M.R., Miller A.H. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun. 2007;21:374–383. doi: 10.1016/j.bbi.2007.01.010. [DOI] [PubMed] [Google Scholar]
  • [18].Pace T.W., Hu F., Miller A.H. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun. 2007;21:9–19. doi: 10.1016/j.bbi.2006.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Rohleder N., Wolf J.M., Wolf O.T. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci Biobehav Rev. 2010;35:104–114. doi: 10.1016/j.neubiorev.2009.12.003. [DOI] [PubMed] [Google Scholar]
  • [20].Herman J.P., Figueiredo H., Mueller N.K., Ulrich-Lai Y., Ostrander M.M., Choi D.C., et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–180. doi: 10.1016/j.yfrne.2003.07.001. [DOI] [PubMed] [Google Scholar]
  • [21].Segerstrom S.C., Miller G.E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–630. doi: 10.1037/0033-2909.130.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Bierhaus A., Wolf J., Andrassy M., Rohleder N., Humpert P.M., Petrov D., et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100:1920–1925. doi: 10.1073/pnas.0438019100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Pavlov V.A., Tracey K.J. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19:493–499. doi: 10.1016/j.bbi.2005.03.015. [DOI] [PubMed] [Google Scholar]
  • [24].Glaser R., Kiecolt-Glaser J.K. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5:243–251. doi: 10.1038/nri1571. [DOI] [PubMed] [Google Scholar]
  • [25].Murray D.R., Prabhu S.D., Chandrasekar B. Chronic beta-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation. 2000;101:2338–2341. doi: 10.1161/01.CIR.101.20.2338. [DOI] [PubMed] [Google Scholar]
  • [26].Sorrells S.F., Caso J.R., Munhoz C.D., Sapolsky R.M. The stressed CNS: When glucocorticoids aggravate inflammation. Neuron. 2009;64:33–39. doi: 10.1016/j.neuron.2009.09.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Lehnert H., Schulz C., Dieterich K. Physiological and neurochemical aspects of corticotropin-releasing factor actions in the brain: the role of the locus coeruleus. Neurochem Res. 1998;23:1039–1052. doi: 10.1023/A:1020751817723. [DOI] [PubMed] [Google Scholar]
  • [28].Reul J.M., Labeur M.S., Wiegers G.J., Linthorst A.C. Altered neuroim-munoendocrine communication during a condition of chronically increased brain corticotropin-releasing hormone drive. Ann N Y Acad Sci. 1998;840:444–455. doi: 10.1111/j.1749-6632.1998.tb09583.x. [DOI] [PubMed] [Google Scholar]
  • [29].Valentino R.J., Foote S.L., Page M.E. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci. 1993;697:173–188. doi: 10.1111/j.1749-6632.1993.tb49931.x. [DOI] [PubMed] [Google Scholar]
  • [30].Tafet G.E., Bernardini R. Psychoneuroendocrinological links between chronic stress and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:893–903. doi: 10.1016/S0278-5846(03)00162-3. [DOI] [PubMed] [Google Scholar]
  • [31].McEwen B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol Rev. 2007;87:873–904. doi: 10.1152/physrev.00041.2006. [DOI] [PubMed] [Google Scholar]
  • [32].McEwen B.S., Gianaros P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190–222. doi: 10.1111/j.1749-6632.2009.05331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Galea I., Bechmann I., Perry V.H. What is immune privilege (not)? Trends Immunol. 2007;28:12–18. doi: 10.1016/j.it.2006.11.004. [DOI] [PubMed] [Google Scholar]
  • [34].Dantzer R., O’Connor J.C., Freund G.G., Johnson R.W., Kelley K.W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56. doi: 10.1038/nrn2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Capuron L., Miller A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol Ther. 2011;130:226–238. doi: 10.1016/j.pharmthera.2011.01.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].McEwen B.S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol. 2008;583:174–185. doi: 10.1016/j.ejphar.2007.11.071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Quan N., Whiteside M., Herkenham M. Time course and localization patterns of interleukin-1beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience. 1998;83:281–293. doi: 10.1016/S0306-4522(97)00350-3. [DOI] [PubMed] [Google Scholar]
  • [38].Banks W.A. The blood-brain barrier in psychoneuroimmunology. Immunol Allergy Clin North Am. 2009;29:223–228. doi: 10.1016/j.iac.2009.02.001. [DOI] [PubMed] [Google Scholar]
  • [39].Miller A.H., Maletic V., Raison C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–741. doi: 10.1016/j.biopsych.2008.11.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Dunn A.J. Cytokine activation of the HPA axis. Ann N Y Acad Sci. 2000;917:608–617. doi: 10.1111/j.1749-6632.2000.tb05426.x. [DOI] [PubMed] [Google Scholar]
  • [41].Calcagni E., Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci. 2006;1069:62–76. doi: 10.1196/annals.1351.006. [DOI] [PubMed] [Google Scholar]
  • [42].Adrian J. D. The HPA axis and the immune system: A perspective. NeuroImmune Biol. 2007;7:3–15. doi: 10.1016/S1567-7443(07)00201-3. [DOI] [Google Scholar]
  • [43].Pariante C.M. Depression, stress and the adrenal axis. J Neuroendocrinol. 2003;15:811–812. doi: 10.1046/j.1365-2826.2003.01058.x. [DOI] [PubMed] [Google Scholar]
  • [44].Pariante C.M., Miller A.H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry. 2001;49:391–404. doi: 10.1016/S0006-3223(00)01088-X. [DOI] [PubMed] [Google Scholar]
  • [45].Keller J., Flores B., Gomez R.G., Solvason H.B., Kenna H., Williams G.H., et al. Cortisol circadian rhythm alterations in psychotic major depression. Biol Psychiatry. 2006;60:275–281. doi: 10.1016/j.biopsych.2005.10.014. [DOI] [PubMed] [Google Scholar]
  • [46].Nijm J., Jonasson L. Inflammation and cortisol response in coronary artery disease. Ann Med. 2009;41:224–233. doi: 10.1080/07853890802508934. [DOI] [PubMed] [Google Scholar]
  • [47].Pace T.W., Miller A.H. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci. 2009;1179:86–105. doi: 10.1111/j.1749-6632.2009.04984.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Agelaki S., Tsatsanis C., Gravanis A., Margioris A.N. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun. 2002;70:6068–6074. doi: 10.1128/IAI.70.11.6068-6074.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Pascoli V., Turiault M., Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature. 2012;481:71–75. doi: 10.1038/nature10709. [DOI] [PubMed] [Google Scholar]
  • [50].Tsai H.C., Zhang F., Adamantidis A., Stuber G.D., Bonci A., de Lecea L., et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–1084. doi: 10.1126/science.1168878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Ren J., Qin C., Hu F., Tan J., Qiu L., Zhao S., et al. Habenula cholinergic neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron. 2011;69:445–452. doi: 10.1016/j.neuron.2010.12.038. [DOI] [PubMed] [Google Scholar]
  • [52].DePuy S.D., Kanbar R., Coates M.B., Stornetta R.L., Guyenet P.G. Control of breathing by raphe obscurus serotonergic neurons in mice. J Neurosci. 2011;31:1981–1990. doi: 10.1523/JNEUROSCI.4639-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].de Jonge P., Rosmalen J.G.M., Kema I.P., Doornbos B., van Melle J.P., Pouwer F., et al. Psychophysiological biomarkers explaining the association between depression and prognosis in coronary artery patients: A critical review of the literature. Neurosci Biobehav Rev. 2010;35:84–90. doi: 10.1016/j.neubiorev.2009.11.025. [DOI] [PubMed] [Google Scholar]
  • [54].Grippo A.J., Johnson A.K. Stress, depression and cardiovascular dysregulation: a review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress. 2009;12:1–21. doi: 10.1080/10253890802046281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [55].Poole L., Dickens C., Steptoe A. The puzzle of depression and acute coronary syndrome: reviewing the role of acute inflammation. J Psychosom Res. 2011;71:61–68. doi: 10.1016/j.jpsychores.2010.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Lichtman J.H., Bigger J.T., Blumenthal J.A., Frasure-Smith N., Kaufmann P.G., Lespérance F., et al. Depression and coronary heart disease. Circulation. 2008;118:1768–1775. doi: 10.1161/CIRCULATIONAHA.108.190769. [DOI] [PubMed] [Google Scholar]
  • [57].Felder R.B., Francis J., Zhang Z.H., Wei S.G., Weiss R.M., Johnson A.K. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol. 2003;284:R259–276. doi: 10.1152/ajpregu.00317.2002. [DOI] [PubMed] [Google Scholar]
  • [58].Penninx B.W., Beekman A.T., Honig A., Deeg D.J., Schoevers R.A., van Eijk J.T., et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry. 2001;58:221–227. doi: 10.1001/archpsyc.58.3.221. [DOI] [PubMed] [Google Scholar]
  • [59].Black P.H., Garbutt L.D. Stress, inflammation and cardiovascular disease. J Psychosom Res. 2002;52:1–23. doi: 10.1016/S0022-3999(01)00302-6. [DOI] [PubMed] [Google Scholar]
  • [60].Mann D.L. Inflammatory mediators and the failing heart. Circ Res. 2002;91:988–998. doi: 10.1161/01.RES.0000043825.01705.1B. [DOI] [PubMed] [Google Scholar]
  • [61].Savoia C., Schiffrin E.L. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15:152–158. doi: 10.1097/01.mnh.0000203189.57513.76. [DOI] [PubMed] [Google Scholar]
  • [62].Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [63].Kettenmann H., Hanisch U.K., Noda M., Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91:461–553. doi: 10.1152/physrev.00011.2010. [DOI] [PubMed] [Google Scholar]
  • [64].Welsh P., Lowe G.D., Chalmers J., Campbell D.J., Rumley A., Neal B.C., et al. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke. 2008;39:2226–2230. doi: 10.1161/STROKEAHA.107.504498. [DOI] [PubMed] [Google Scholar]
  • [65].Kannan H., Tanaka Y., Kunitake T., Ueta Y., Hayashida Y., Yamashita H. Activation of sympathetic outflow by recombinant human interleu-kin-1 beta in conscious rats. Am J Physiol. 1996;270:R479–R485. doi: 10.1152/ajpregu.1996.270.2.R479. [DOI] [PubMed] [Google Scholar]
  • [66].Kimura T., Yamamoto T., Ota K., Shoji M., Inoue M., Sato K., et al. Central effects of interleukin-1 on blood pressure, thermogenesis, and the release of vasopressin, ACTH, and atrial natriuretic peptide. Ann N Y Acad Sci. 1993;689:330–345. doi: 10.1111/j.1749-6632.1993.tb55558.x. [DOI] [PubMed] [Google Scholar]
  • [67].Francis J., Zhang Z.H., Weiss R.M., Felder R.B. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol. 2004;287:H791–H797. doi: 10.1152/ajpheart.00099.2004. [DOI] [PubMed] [Google Scholar]
  • [68].Kang Y.M., Ma Y., Elks C., Zheng J.P., Yang Z.M., Francis J. Cross-talk between cytokines and renin-angiotensin in hypothalamic para-ventricular nucleus in heart failure: role of nuclear factor-κB. Cardiovasc Res. 2008;79:671–678. doi: 10.1093/cvr/cvn119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Kang Y.M., Zhang Z.H., Xue B., Weiss R.M., Felder R.B. Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol. 2008;295:H227–H236. doi: 10.1152/ajpheart.01157.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Kang Y.M., He R.L., Yang L.M., Qin D.N., Guggilam A., Elks C., et al. Brain tumour necrosis factor-α modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res. 2009;83:737–746. doi: 10.1093/cvr/cvp160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Yu Y., Zhang Z.H., Wei S.G., Chu Y., Weiss R.M., Heistad D.D., et al. Central gene transfer of interleukin-10 reduces hypothalamic inflammation and evidence of heart failure in rats after myocardial infarction. Circ Res. 2007;101:304–312. doi: 10.1161/CIRCRESAHA.107.148940. [DOI] [PubMed] [Google Scholar]
  • [72].Ufnal M., Sikora M., Szczepanska-Sadowska E. Interleukin-1 receptor antagonist reduces the magnitude of the pressor response to acute stress. Neurosci Lett. 2008;448:47–51. doi: 10.1016/j.neulet.2008.10.010. [DOI] [PubMed] [Google Scholar]
  • [73].Ufnal M., Dudek M., Żera T., Szczepańska-Sadowska E. Centrally administered interleukin-1 beta sensitizes to the central pressor action of angiotensin II. Brain Res. 2006;1100:64–72. doi: 10.1016/j.brainres.2006.04.122. [DOI] [PubMed] [Google Scholar]
  • [74].Sriramula S., Haque M., Majid D.S.A., Francis J. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension. 2008;51:1345–1351. doi: 10.1161/HYPERTENSIONAHA.107.102152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75].Cardinale J.P., Sriramula S., Mariappan N., Agarwal D., Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-κB in the paraventricular nucleus. Hypertension. 2012;59:113–121. doi: 10.1161/HYPERTENSIONAHA.111.182154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Dean B., Tawadros N., Scarr E., Gibbons A.S. Regionally-specific changes in levels of tumour necrosis factor in the dorsolateral prefrontal cortex obtained postmortem from subjects with major depressive disorder. J Affect Disord. 2010;120:245–248. doi: 10.1016/j.jad.2009.04.027. [DOI] [PubMed] [Google Scholar]
  • [77].Goshen I., Kreisel T., Ben-Menachem-Zidon O., Licht T., Weidenfeld J., Ben-Hur T., et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2007;13:717–728. doi: 10.1038/sj.mp.4002055. [DOI] [PubMed] [Google Scholar]
  • [78].Robert D. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29:247–264. doi: 10.1016/j.iac.2009.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Bluthé R.M., Pawlowski M., Suarez S., Parnet P., Pittman Q., Kelley K.W., et al. Synergy between tumor necrosis factor α and interleukin-1 in the induction of sickness behavior in mice. Psychoneuroendocrinology. 1994;19:197–207. doi: 10.1016/0306-4530(94)90009-4. [DOI] [PubMed] [Google Scholar]
  • [80].Mastronardi C., Whelan F., Yildiz O.A., Hannestad J., Elashoff D., McCann S.M., et al. Caspase 1 deficiency reduces inflammation-induced brain transcription. Proc Natl Acad Sci U S A. 2007;104:7205–7210. doi: 10.1073/pnas.0701366104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [81].Grippo A.J., Francis J., Beltz T.G., Felder R.B., Johnson A.K. Neuroen-docrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav. 2005;84:697–706. doi: 10.1016/j.physbeh.2005.02.011. [DOI] [PubMed] [Google Scholar]
  • [82].Grippo A.J., Francis J., Weiss R.M., Felder R.B., Johnson A.K. Cytokine mediation of experimental heart failure-induced anhedonia. Am J Physiol Regul Integr Comp Physiol. 2003;284:R666–R673. doi: 10.1152/ajpregu.00430.2002. [DOI] [PubMed] [Google Scholar]
  • [83].Guggilam A., Patel K.P., Haque M., Ebenezer P.J., Kapusta D.R., Francis J. Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail. 2008;10:625–634. doi: 10.1016/j.ejheart.2008.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [84].O’Connor K.A., Johnson J.D., Hansen M.K., Wieseler Frank J.L., Maksimova E., Watkins L.R., et al. Peripheral and central proinflammatory cytokine response to a severe acute stressor. Brain Res. 2003;991:123–132. doi: 10.1016/j.brainres.2003.08.006. [DOI] [PubMed] [Google Scholar]
  • [85].Shi P., Raizada M.K., Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol. 2010;37:e52–e57. doi: 10.1111/j.1440-1681.2009.05234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [86].Girod J.P., Brotman D.J. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res. 2004;64:217–226. doi: 10.1016/j.cardiores.2004.07.006. [DOI] [PubMed] [Google Scholar]
  • [87].Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89. doi: 10.1210/er.21.1.55. [DOI] [PubMed] [Google Scholar]
  • [88].Fujiwara T., Cherrington A.D., Neal D.N., McGuinness O.P. Role of cortisol in the metabolic response to stress hormone infusion in the conscious dog. Metabolism. 1996;45:571–578. doi: 10.1016/S0026-0495(96)90026-8. [DOI] [PubMed] [Google Scholar]
  • [89].Goldstein R.E., Cherrington A.D., Reed G.W., Lacy D.B., Wasserman D.H., Abumrad N.N. Effects of chronic hypercortisolemia on carbo-hydrate metabolism during insulin deficiency. Am J Physiol. 1994;266:E618–E627. doi: 10.1152/ajpendo.1994.266.4.E618. [DOI] [PubMed] [Google Scholar]
  • [90].Gorzelniak K., Engeli S., Janke J., Luft F.C., Sharma A.M. Hormonal regulation of the human adipose-tissue renin-angiotensin system: relationship to obesity and hypertension. J Hypertens. 2002;20:965–973. doi: 10.1097/00004872-200205000-00032. [DOI] [PubMed] [Google Scholar]
  • [91].Munck A., Náray-Fejes-Tóth A. Glucocorticoids and stress: permissive and suppressive actions. Ann N Y Acad Sci. 1994;746:115–130. doi: 10.1111/j.1749-6632.1994.tb39221.x. [DOI] [PubMed] [Google Scholar]
  • [92].Brown E.S., Varghese F.P., McEwen B.S. Association of depression with medical illness: does cortisol play a role? Biol Psychiatry. 2004;55:1–9. doi: 10.1016/S0006-3223(03)00473-6. [DOI] [PubMed] [Google Scholar]
  • [93].Rosmond R., Wallerius S., Wanger P., Martin L., Holm G., Björntorp P. A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern. J Intern Med. 2003;254:386–390. doi: 10.1046/j.1365-2796.2003.01205.x. [DOI] [PubMed] [Google Scholar]
  • [94].Leonard B.E. The concept of depression as a dysfunction of the immune system. Curr Immunol Rev. 2010;6:205–212. doi: 10.2174/157339510791823835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [95].Jokinen J., Nordström P. HPA axis hyperactivity and cardiovascular mortality in mood disorder inpatients. J Affect Disord. 2009;116:88–92. doi: 10.1016/j.jad.2008.10.025. [DOI] [PubMed] [Google Scholar]
  • [96].Vogelzangs N., Suthers K., Ferrucci L., Simonsick E.M., Ble A., Schrager M., et al. Hypercortisolemic depression is associated with the metabolic syndrome in late-life. Psychoneuroendocrinology. 2007;32:151–159. doi: 10.1016/j.psyneuen.2006.11.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [97].Koeijvoets K.C.M.C., van der Net J.B., van Rossum E.F.C., Steyerberg E.W., Defesche J.C., Kastelein J.J.P., et al. Two Common haplotypes of the glucocorticoid receptor gene are associated with increased susceptibility to cardiovascular disease in men with familial hyper-cholesterolemia. J Clin Endocrinol Metab. 2008;93:4902–4908. doi: 10.1210/jc.2008-0813. [DOI] [PubMed] [Google Scholar]
  • [98].Vedder H., Schreiber W., Schuld A., Kainz M., Lauer C.J., Krieg J.C., et al. Immune-endocrine host response to endotoxin in major depression. J Psychiatr Res. 2007;41:280–289. doi: 10.1016/j.jpsychires.2006.07.014. [DOI] [PubMed] [Google Scholar]
  • [99].Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–29. doi: 10.1038/nmeth.f.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [100].Yizhar O., Fenno L.E., Davidson T.J., Mogri M., Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71:9–34. doi: 10.1016/j.neuron.2011.06.004. [DOI] [PubMed] [Google Scholar]
  • [101].Covington H.E., Lobo M.K., Maze I., Vialou V., Hyman J.M., Zaman S., et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30:16082–16090. doi: 10.1523/JNEUROSCI.1731-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [102].Tye K.M., Prakash R., Kim S.Y., Fenno L.E., Grosenick L., Zarabi H., et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–362. doi: 10.1038/nature09820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [103].Tye K.M., Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 2012;13:251–266. doi: 10.1038/nrn3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [104].Boyden E.S., Zhang F., Bamberg E., Nagel G., Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–1268. doi: 10.1038/nn1525. [DOI] [PubMed] [Google Scholar]
  • [105].Zhang F., Wang L.P., Boyden E.S., Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods. 2006;3:785–792. doi: 10.1038/nmeth936. [DOI] [PubMed] [Google Scholar]
  • [106].Zhang F., Wang L.P., Brauner M., Liewald J.F., Kay K., Watzke N., et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–639. doi: 10.1038/nature05744. [DOI] [PubMed] [Google Scholar]
  • [107].Aravanis A.M., Wang L.P., Zhang F., Meltzer L.A., Mogri M.Z., Schneider M.B., et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng. 2007;4:S143–156. doi: 10.1088/1741-2560/4/3/S02. [DOI] [PubMed] [Google Scholar]
  • [108].Sidor M.M. Psychiatry’s age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. J Psychiatry Neurosci. 2012;37:4–6. doi: 10.1503/jpn.110175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [109].Goshen I., Brodsky M., Prakash R., Wallace J., Gradinaru V., Ramakrishnan C., et al. Dynamics of retrieval strategies for remote memories. Cell. 2011;147:678–689. doi: 10.1016/j.cell.2011.09.033. [DOI] [PubMed] [Google Scholar]
  • [110].Jankord R., Herman J.P. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci. 2008;1148:64–73. doi: 10.1196/annals.1410.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [111].Wilbrecht L., Shohamy D. Neural circuits can bridge systems and cognitive neuroscience. Front Hum Neurosci. 2010;3:81. doi: 10.3389/neuro.09.081.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [112].Gadek-Michalska A., Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep. 2010;62:969–982. doi: 10.1016/s1734-1140(10)70359-5. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES