Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Feb 2;27(1):36–44. doi: 10.1007/s12264-011-1048-y

Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons

钾通道阻滞剂可以有效修复受伤轴突的冲动传导

Riyi Shi 1,, Wenjing Sun 1
PMCID: PMC5560282  PMID: 21270902

Abstract

Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.

Keywords: axon, conduction, potassium channel, injury, demyelination, 4-aminopyridine

References

  • [1].Kandel E.R., Schwartz J.H., Jessell T.M. Principles of Neural Science. 4th ed. New York: McGraw-hill; 2000. [Google Scholar]
  • [2].Waxman S.G., Kocsis J.D., Stys P.K. The Axon. New York Oxford: Oxford University Press; 1995. [Google Scholar]
  • [3].Blight A.R. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Central Nervous System Trauma. 1985;2:299–315. doi: 10.1089/cns.1985.2.299. [DOI] [PubMed] [Google Scholar]
  • [4].Shi R., Blight A.R. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience. 1997;77:553–562. doi: 10.1016/S0306-4522(96)00477-0. [DOI] [PubMed] [Google Scholar]
  • [5].Nashmi R., Fehlings M.G. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience. 2001;104:235–251. doi: 10.1016/S0306-4522(01)00009-4. [DOI] [PubMed] [Google Scholar]
  • [6].Waxman S.G. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med. 1982;306:1529–1533. doi: 10.1056/NEJM198206243062505. [DOI] [PubMed] [Google Scholar]
  • [7].Waxman S.G. Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med. 1998;338:323–325. doi: 10.1056/NEJM199801293380610. [DOI] [PubMed] [Google Scholar]
  • [8].Waxman S.G. Ion channels and neuronal dysfunction in multiple sclerosis. Arch Neurol. 2002;59:1377–1380. doi: 10.1001/archneur.59.9.1377. [DOI] [PubMed] [Google Scholar]
  • [9].Jensen J.M., Shi R. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J Neurophysiol. 2003;90:2334–2340. doi: 10.1152/jn.00868.2002. [DOI] [PubMed] [Google Scholar]
  • [10].Sun W., Smith D., Fu Y., Cheng J.X., Bryn S., Borgens R., et al. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. J Neurophysiol. 2010;103:469–478. doi: 10.1152/jn.00154.2009. [DOI] [PubMed] [Google Scholar]
  • [11].Waxman S.G., Ritchie J.M. Molecular dissection of the myelinated axon. Ann Neurol. 1993;33:121–136. doi: 10.1002/ana.410330202. [DOI] [PubMed] [Google Scholar]
  • [12].Poliak S., Peles E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci. 2003;4:968–980. doi: 10.1038/nrn1253. [DOI] [PubMed] [Google Scholar]
  • [13].Vabnick I., Trimmer J.S., Schwarz T.L., Levinson S.R., Risal D., Shrager P. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J Neurosci. 1999;19:747–758. doi: 10.1523/JNEUROSCI.19-02-00747.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Zhou L., Zhang C.L., Messing A., Chiu S.Y. Temperature-sensitive neuromuscular transmission in Kv1.1 null mice: role of potassium channels under the myelin sheath in young nerves. J Neurosci. 1998;18:7200–7215. doi: 10.1523/JNEUROSCI.18-18-07200.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Chiu S.Y. Asymmetry currents in the mammalian myelinated nerve. J Physiol. 1980;309:499–519. doi: 10.1113/jphysiol.1980.sp013523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Chiu S.Y., Ritchie J.M. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc R Soc Lond B Biol Sci. 1984;220:415–422. doi: 10.1098/rspb.1984.0010. [DOI] [PubMed] [Google Scholar]
  • [17].Peles E., Salzer J.L. Molecular domains of myelinated axons. Curr Opin Neurobiol. 2000;10:558–565. doi: 10.1016/S0959-4388(00)00122-7. [DOI] [PubMed] [Google Scholar]
  • [18].Salzer J.L., Brophy P.J., Peles E. Molecular domains of myelinated axons in the peripheral nervous system. Glia. 2008;56:1532–1540. doi: 10.1002/glia.20750. [DOI] [PubMed] [Google Scholar]
  • [19].Ouyang H., Sun W., Fu Y., Li J., Cheng J.X., Nauman E., et al. Compression induces acute demyelination and potassium channel exposure in spinal cord. J Neurotrauma. 2010;27:1109–1120. doi: 10.1089/neu.2010.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Shi R., Kelly T.M., Blight A.R. Conduction block in acute and chronic spinal cord injury: Different dose-response characteristics for reversal by 4-Aminopyridine. Exp Neurology. 1997;148:495–501. doi: 10.1006/exnr.1997.6706. [DOI] [PubMed] [Google Scholar]
  • [21].Waxman S.G. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery? J Neurotrauma. 1992;9:S105–117. [PubMed] [Google Scholar]
  • [22].Blight A.R. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J Neurol Sci. 1991;103:156–171. doi: 10.1016/0022-510X(91)90159-5. [DOI] [PubMed] [Google Scholar]
  • [23].Nashmi R., Jones O.T., Fehlings M.G. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury. Eur J Neurosci. 2000;12:491–506. doi: 10.1046/j.1460-9568.2000.00926.x. [DOI] [PubMed] [Google Scholar]
  • [24].Karimi-Abdolrezaee S., Eftekharpour E., Fehlings M.G. Temporal and spatial patterns of Kv1.1 and Kv1.2 protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. Eur J Neurosci. 2004;19:577–589. doi: 10.1111/j.0953-816X.2004.03164.x. [DOI] [PubMed] [Google Scholar]
  • [25].McDonald J.W., Belegu V. Demyelination and remyelination after spinal cord injury. J Neurotrauma. 2006;23:345–359. doi: 10.1089/neu.2006.23.345. [DOI] [PubMed] [Google Scholar]
  • [26].Totoiu M.O., Keirstead H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol. 2005;486:373–383. doi: 10.1002/cne.20517. [DOI] [PubMed] [Google Scholar]
  • [27].Wang H., Fu Y., Zickmund P., Shi R., Cheng J.X. Coherent antistokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J. 2005;89:581–591. doi: 10.1529/biophysj.105.061911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Howell O.W., Palser A., Polito A., Melrose S., Zonta B., Scheiermann C., et al. Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain. 2006;129:3173–3185. doi: 10.1093/brain/awl290. [DOI] [PubMed] [Google Scholar]
  • [29].Shi R., Pryor J.D. Pathological changes of isolated spinal cord axons in response to mechanical stretch. Neuroscience. 2002;110:765–777. doi: 10.1016/S0306-4522(01)00596-6. [DOI] [PubMed] [Google Scholar]
  • [30].Waxman S.G. Demyelination in spinal cord injury. J Neurol Sci. 1989;91:1–14. doi: 10.1016/0022-510X(89)90072-5. [DOI] [PubMed] [Google Scholar]
  • [31].Fu Y., Sun W., Shi Y., Shi R., Cheng J.X. Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS One. 2009;4:e6705. doi: 10.1371/journal.pone.0006705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Fu Y., Wang H., Huff T.B., Shi R., Cheng J.X. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. J Neurosci Res. 2007;85:2870–2881. doi: 10.1002/jnr.21403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Bostock H., Sears T.A., Sherratt R.M. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J Physiol. 1981;313:301–315. doi: 10.1113/jphysiol.1981.sp013666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Bostock H., Sherratt R.M., Sears T.A. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature. 1978;274:385–387. doi: 10.1038/274385a0. [DOI] [PubMed] [Google Scholar]
  • [35].Targ E.F., Kocsis J.D. 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res. 1985;328:358–361. doi: 10.1016/0006-8993(85)91049-2. [DOI] [PubMed] [Google Scholar]
  • [36].Blight A.R. Effect of 4-aminopyridine on axonal conductionblock in chronic spinal cord injury. Brain Res Bull. 1989;22:47–52. doi: 10.1016/0361-9230(89)90126-3. [DOI] [PubMed] [Google Scholar]
  • [37].Blight A.R., Gruner J.A. Augmentation by 4-aminopyridine of vestibulospinal free fall responses in chronic spinal-injured cats. J Neurol Sci. 1987;82:145–159. doi: 10.1016/0022-510X(87)90014-1. [DOI] [PubMed] [Google Scholar]
  • [38].Kaji R., Sumner A.J. Effects of 4-aminopyridine in experimental CNS demyelination. Neurology. 1988;38:1884–1887. doi: 10.1212/wnl.38.12.1884. [DOI] [PubMed] [Google Scholar]
  • [39].Hayes K.C., Blight A.R., Potter P.J., Allatt R.D., Hsieh J., Wolfe D.L., et al. Preclinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Paraplegia. 1993;31:216–224. doi: 10.1038/sc.1993.40. [DOI] [PubMed] [Google Scholar]
  • [40].Hayes K.C. The use of 4-aminopyridine (Fampridine) in demyelinating disorders. CNS Drug Rev. 2004;10:295–316. doi: 10.1111/j.1527-3458.2004.tb00029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Donovan W.H., Halter J.A., Graves D.E., Blight A.R., Calvillo O., McCann M.T., et al. Intravenous infusion of 4-AP in chronic spinal cord injured subjects. Spinal Cord. 2000;38:7–15. doi: 10.1038/sj/sc/3100931. [DOI] [PubMed] [Google Scholar]
  • [42].Halter J.A., Blight A.R., Donovan W.H., Calvillo O. Intrathecal administration of 4-aminopyridine in chronic spinal injured patients. Spinal Cord. 2000;38:728–732. doi: 10.1038/sj.sc.3101098. [DOI] [PubMed] [Google Scholar]
  • [43].Goodman A.D., Brown T.R., Krupp L.B., Schapiro R.T., Schwid S.R., Cohen R., et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet. 2009;373:732–738. doi: 10.1016/S0140-6736(09)60442-6. [DOI] [PubMed] [Google Scholar]
  • [44].Targ E.F., Kocsis J.D. Action potential characteristics of demyelinated rat sciatic nerve following application of 4-aminopyridine. Brain Res. 1986;363:1–9. doi: 10.1016/0006-8993(86)90652-9. [DOI] [PubMed] [Google Scholar]
  • [45].Blight A.R. Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience. 1985;15:13–31. doi: 10.1016/0306-4522(85)90119-8. [DOI] [PubMed] [Google Scholar]
  • [46].van der Bruggen M.A., Huisman H.B., Beckerman H., Bertelsmann F.W., Polman C.H., Lankhorst G.J. Randomized trial of 4-aminopyridine in patients with chronic incomplete spinal cord injury. J Neurol. 2001;248:665–671. doi: 10.1007/s004150170111. [DOI] [PubMed] [Google Scholar]
  • [47].Acorda. Acorda Therapeutics Reports Results of Fampridine-SR Clinical Trials (Press Release). 2004.
  • [48].Potter P.J., Hayes K.C., Segal J.L., Hsieh J.T., Brunnemann S.R., Delaney G.A., et al. Randomized double-blind crossover trial of fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma. 1998;15:837–849. doi: 10.1089/neu.1998.15.837. [DOI] [PubMed] [Google Scholar]
  • [49].Grijalva I., Guizar-Sahagun G., Castaneda-Hernandez G., Mino D., Maldonado-Julian H., Vidal-Cantu G., et al. Efficacy and safety of 4-aminopyridine in patients with long-term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy. 2003;23:823–834. doi: 10.1592/phco.23.7.823.32731. [DOI] [PubMed] [Google Scholar]
  • [50].Stefoski D., Davis F.A., Fitzsimmons W.E., Luskin S.S., Rush J., Parkhurst G.W. 4-Aminopyridine in multiple sclerosis: Prolonged administration. Neurology. 1991;41:1344–1348. doi: 10.1212/wnl.41.9.1344. [DOI] [PubMed] [Google Scholar]
  • [51].Stefoski D., Davis F.A., Faut M., Schauf C.L. 4-Aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol. 1987;21:71–77. doi: 10.1002/ana.410210113. [DOI] [PubMed] [Google Scholar]
  • [52].Fujihara K., Miyoshi T. The effects of 4-aminopyridine on motor evoked potentials in multiple sclerosis. J Neurol Sci. 1998;159:102–106. doi: 10.1016/S0022-510X(98)00143-9. [DOI] [PubMed] [Google Scholar]
  • [53].Davis F.A., Stefoski D., Quandt F.N. Mechanism of action of 4-aminopyridine in the symptomatic treatment of multiple sclerosis. Ann Neurol. 1995;37:684–684. doi: 10.1002/ana.410370524. [DOI] [PubMed] [Google Scholar]
  • [54].Polman C.H., Bertelsmann F.W., De Waal R. 4-Aminopyridine is superior to 3,4-diaminopyridine in the treatment of patients with multiple sclerosis. Arch Neurol. 1994;51:1136–1139. doi: 10.1001/archneur.1994.00540230074016. [DOI] [PubMed] [Google Scholar]
  • [55].Polman C.H., Bertelsmann F.W., Van Loenen A.C., Koetsier J.C. 4-Aminopyridine in the treatment of patients with multiple sclerosis. Arch Neurol. 1994;51:292–296. doi: 10.1001/archneur.1994.00540150090022. [DOI] [PubMed] [Google Scholar]
  • [56].van Diemen H., Polman C.H., van Dongen M., Nauta J., Strijers R., Van Loenen A.C., et al. 4-Aminopyridine induces functional improvement in multiple sclerosis patients: A neurophysiological study. J Neurol Sci. 1993;116:220–226. doi: 10.1016/0022-510X(93)90329-W. [DOI] [PubMed] [Google Scholar]
  • [57].Bever C.T., Jr., Young D., Anderson P.A., Krumholz A., Conway K., Leslie J., et al. The effects of 4-aminopyridine in multiple sclerosis patients: controlled, crossover trial. Neurology. 1994;44:1054–1059. doi: 10.1212/wnl.44.6.1054. [DOI] [PubMed] [Google Scholar]
  • [58].van Diemen H.A.M., Polman C.H., van Dongen T.M.M.M., van Loenen A.C., Nauta J.J.P., Taphoorn M.J.B., et al. The effect of 4-aminopyridine on clinical signs in multiple sclerosis: a randomized, placebo-controlled, double-blind, cross-over study. Ann Neurol. 1992;32:123–130. doi: 10.1002/ana.410320203. [DOI] [PubMed] [Google Scholar]
  • [59].Davis F.A., Stefoski D., Rush J. Orally administered 4-aminopyridine improves clinical signs in multiple sclerosis. Ann Neurol. 1990;27:186–192. doi: 10.1002/ana.410270215. [DOI] [PubMed] [Google Scholar]
  • [60].Jones R.E., Heron J.R., Foster D.H., Snelgar R.S., Mason R.J. Effects of 4-aminopyridine in patients with multiple sclerosis. J Neurol Sci. 1983;60:353–362. doi: 10.1016/0022-510X(83)90145-4. [DOI] [PubMed] [Google Scholar]
  • [61].Judge S.I., Bever C. Jr. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther. 2006;111:224–259. doi: 10.1016/j.pharmthera.2005.10.006. [DOI] [PubMed] [Google Scholar]
  • [62].Goodman A.D., Brown T.R., Cohen J.A., Krupp L.B., Schapiro R., Schwid S.R., et al. Dose comparison trial of sustained-release fampridine in multiple sclerosis. Neurology. 2008;71:1134–1141. doi: 10.1212/01.wnl.0000326213.89576.0e. [DOI] [PubMed] [Google Scholar]
  • [63].Goodman A.D., Brown T.R., Edwards K.R., Krupp L.B., Schapiro R.T., Cohen R., et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann Neurol. 2010;68:494–502. doi: 10.1002/ana.22240. [DOI] [PubMed] [Google Scholar]
  • [64].Goodman A.D., Cohen J.A., Cross A., Vollmer T., Rizzo M., Cohen R., et al. Fampridine-SR in multiple sclerosis: a randomized, double-blind, placebo-controlled, dose-ranging study. Mult Scler. 2007;13:357–368. doi: 10.1177/1352458506069538. [DOI] [PubMed] [Google Scholar]
  • [65].Van Diemen H.A., Polman C.H., Koetsier J.C., Van Loenen A.C., Nauta J.J., Bertelsmann F.W. 4-Aminopyridine in patients with multiple sclerosis: dosage and serum level related to efficacy and safety. Clin Neuropharmacol. 1993;16:195–204. doi: 10.1097/00002826-199306000-00002. [DOI] [PubMed] [Google Scholar]
  • [66].Agoston S., Salt P.J., Erdmann W., Hilkemeijer T., Bencini A., Langrehr D. Antagonism of ketamine-diazepam anaesthesia by 4-aminopyridine in human volunteers. Br J Anaesth. 1980;52:367–371. doi: 10.1093/bja/52.4.367. [DOI] [PubMed] [Google Scholar]
  • [67].Pena F., Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamateand GABA-mediated neurotransmission and of ion channels. Neuroscience. 2000;101:547–561. doi: 10.1016/S0306-4522(00)00400-0. [DOI] [PubMed] [Google Scholar]
  • [68].Pena F., Tapia R. Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study. J Neurochem. 1999;72:2006–2014. doi: 10.1046/j.1471-4159.1999.0722006.x. [DOI] [PubMed] [Google Scholar]
  • [69].Stork C.M., Hoffman R.S. Characterization of 4-aminopyridine in overdose. Clin Toxicol. 1994;32:583–587. doi: 10.3109/15563659409011063. [DOI] [PubMed] [Google Scholar]
  • [70].Felts P.A., Smith K.J. The use of potassium channel blocking agents in the therapy of demyelinating diseases. Ann Neurol. 1994;36:454–454. doi: 10.1002/ana.410360330. [DOI] [PubMed] [Google Scholar]
  • [71].Smith D.T., Shi R., Borgens R.B., McBride J.M., Jackson K., Byrn S.R. Development of novel 4-aminopyridine derivatives as potential treatments for neurological injury and disease. Eur J Med Chem. 2005;40:908–917. doi: 10.1016/j.ejmech.2005.04.017. [DOI] [PubMed] [Google Scholar]
  • [72].McBride J.M., Smith D.T., Byrn S.R., Borgens R.B. Shi R. 4-Aminopyridine derivatives enhance impulse conduction in guineapig spinal cord following traumatic injury. Neuroscience. 2007;148:44–52. doi: 10.1016/j.neuroscience.2007.05.039. [DOI] [PubMed] [Google Scholar]
  • [73].Sun W., Smith D., Bryn S., Borgens R., Shi R. N-(4-pyridyl) methyl carbamate inhibits fast potassium currents in guinea pig dorsal root ganglion cells. J Neurol Sci. 2009;277:114–118. doi: 10.1016/j.jns.2008.10.028. [DOI] [PubMed] [Google Scholar]
  • [74].McBride J.M., Smith D.T., Byrn S.R., Borgens R.B., Shi R. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma. Eur J Pharm Sci. 2006;27:237–242. doi: 10.1016/j.ejps.2005.10.003. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES