Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jan 25;28(1):49–60. doi: 10.1007/s12264-012-1058-4

Involvement of microglia and interleukin-18 in the induction of long-term potentiation of spinal nociceptive responses induced by tetanic sciatic stimulation

Yu-Xia Chu 1,2, Yu-Qiu Zhang 1, Zhi-Qi Zhao 1,
PMCID: PMC5560287  PMID: 22233889

Abstract

Objective

The present study aimed to investigate the potential roles of spinal microglia and downstream molecules in the induction of spinal long-term potentiation (LTP) and mechanical allodynia by tetanic stimulation of the sciatic nerve (TSS).

Methods

Spinal LTP was induced in adult male Sprague-Dawley rats by tetanic stimulation of the sciatic nerve (0.5 ms, 100 Hz, 40 V, 10 trains of 2-s duration at 10-s intervals). Mechanical allodynia was determined using von Frey hairs. Immunohistochemical staining and Western blot were used to detect changes in glial expression of interleukin-18 (IL-18) and IL-18 receptor (IL-18R).

Results

TSS induced LTP of C-fiber-evoked field potentials in the spinal cord. Intrathecal administration of the microglial inhibitor minocycline (200 μg/20 μL) 1 h before TSS completely blocked the induction of spinal LTP. Furthermore, after intrathecal injection of minocycline (200 μg/20 μL) by lumbar puncture 1 h before TSS, administration of minocycline for 7 consecutive days (once per day) partly inhibited bilateral allodynia. Immunohistochemistry showed that minocycline inhibited the sequential activation of microglia and astrocytes, and IL-18 was predominantly colocalized with the microglial marker Iba-1 in the spinal superficial dorsal horn. Western blot revealed that repeated intrathecal injection of minocycline significantly inhibited the increased expression of IL-18 and IL-18Rs in microglia induced by TSS.

Conclusion

The IL-18 signaling pathway in microglia is involved in TSS-induced spinal LTP and mechanical allodynia.

Keywords: long-term potentiation, allodynia, glia, interleukin-18

References

  • [1].Ying B., Lü N., Zhang Y.Q., Zhao Z.Q. Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats. Biochem Biophys Res Commun. 2006;340:1264–1272. doi: 10.1016/j.bbrc.2005.12.139. [DOI] [PubMed] [Google Scholar]
  • [2].Zhang X.C., Zhang Y.Q., Zhao Z.Q. Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats. Neuroreport. 2005;16:1197–1201. doi: 10.1097/00001756-200508010-00013. [DOI] [PubMed] [Google Scholar]
  • [3].Sandkuhler J. Understanding LTP in pain pathways. Mol Pain. 2007;3:9. doi: 10.1186/1744-8069-3-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Liu X.G., Sandkuhler J. Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal Nmethyl-D-aspartic acid receptor blockage. Neurosci Lett. 1995;191:43–46. doi: 10.1016/0304-3940(95)11553-0. [DOI] [PubMed] [Google Scholar]
  • [5].Liu X.G., Sandkuhler J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol. 1997;78:1973–1982. doi: 10.1152/jn.1997.78.4.1973. [DOI] [PubMed] [Google Scholar]
  • [6].Rygh L.J., Svendsen F., Hole K., Tjølsen A. Natural noxious stimulation can induce long-term increase of spinal nociceptive responses. Pain. 1999;82:305–310. doi: 10.1016/S0304-3959(99)00056-1. [DOI] [PubMed] [Google Scholar]
  • [7].Sandkuhler J., Liu X.G. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci. 1998;10:2476–2480. doi: 10.1046/j.1460-9568.1998.00278.x. [DOI] [PubMed] [Google Scholar]
  • [8].Ji R.R., Kohno T., Moore K.A., Woolf C.J. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017. [DOI] [PubMed] [Google Scholar]
  • [9].Guo W., Wang H., Watanabe M., Shimizu K., Zou S., LaGraize S.C., et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27:6006–6018. doi: 10.1523/JNEUROSCI.0176-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Liu L., Rudin M., Kozlova E.N. Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res. 2000;131:64–73. doi: 10.1007/s002219900273. [DOI] [PubMed] [Google Scholar]
  • [11].Ren K., Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16:1267–1276. doi: 10.1038/nm.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Wei F., Guo W., Zou S., Ren K., Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci. 2008;28:10482–10495. doi: 10.1523/JNEUROSCI.3593-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Hua X.Y., Svensson C.I., Matsui T., Fitzsimmons B., Yaksh T.L., Webb M. Intrathecal minocycline attenuates peripheral inflammationinduced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci. 2005;22:2431–2440. doi: 10.1111/j.1460-9568.2005.04451.x. [DOI] [PubMed] [Google Scholar]
  • [14].Nicoll R.A., Malenka R.C. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci. 1999;868:515–525. doi: 10.1111/j.1749-6632.1999.tb11320.x. [DOI] [PubMed] [Google Scholar]
  • [15].Shen Y., Linden D.J. Long-term potentiation of neuronal glutamate transporters. Neuron. 2005;46:715–722. doi: 10.1016/j.neuron.2005.04.033. [DOI] [PubMed] [Google Scholar]
  • [16].Todd K.J., Serrano A., Lacaille J.C., Robitaille R. Glial cells in synaptic plasticity. J Physiol Paris. 2006;99:75–83. doi: 10.1016/j.jphysparis.2005.12.002. [DOI] [PubMed] [Google Scholar]
  • [17].Cunningham A.J., Murray C.A., O’Neill L.A., Lynch M.A., O’Connor J.J. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett. 1996;203:17–20. doi: 10.1016/0304-3940(95)12252-4. [DOI] [PubMed] [Google Scholar]
  • [18].Ikeda H., Tsuda M., Inoue K., Murase K. Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. Eur J Neurosci. 2007;25:1297–1306. doi: 10.1111/j.1460-9568.2007.05386.x. [DOI] [PubMed] [Google Scholar]
  • [19].Ma J.Y., Zhao Z.Q. The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat. Neuroreport. 2002;13:1781–1784. doi: 10.1097/00001756-200210070-00017. [DOI] [PubMed] [Google Scholar]
  • [20].Zhong Y., Zhou L.J., Ren W.J., Xin W.J., Li Y.Y., Zhang T., et al. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: The role of tumor necrosis factor-alpha. Brain Behav Immun. 2001;24:874–880. doi: 10.1016/j.bbi.2010.01.007. [DOI] [PubMed] [Google Scholar]
  • [21].Jeon G.S., Park S.K., Park S.W., Kim D.W., Chung C.K., Cho S.S. Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse hippocampus. Neurochem Res. 2008;33:179–184. doi: 10.1007/s11064-007-9434-6. [DOI] [PubMed] [Google Scholar]
  • [22].Suk K., Yeou Kim S., Kim H. Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells: involvement of NF-κB pathway in the regulatory processes. Immunol Lett. 2001;77:79–85. doi: 10.1016/S0165-2478(01)00209-7. [DOI] [PubMed] [Google Scholar]
  • [23].Wheeler R.D., Brough D., Le Feuvre R.A., Takeda K., Iwakura Y., Luheshi G.N., et al. Interleukin-18 induces expression and release of cytokines from murine glial cells: interactions with interleukin-1 beta. J Neurochem. 2003;85:1412–1420. doi: 10.1046/j.1471-4159.2003.01787.x. [DOI] [PubMed] [Google Scholar]
  • [24].Plater-Zyberk C., Joosten L.A., Helsen M.M., Sattonnet-Roche P., Siegfried C., Alouani S., et al. Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest. 2001;108:1825–1832. doi: 10.1172/JCI12097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Ma J.Y., Zhao Z.Q. The effects of Zn2+ on long-term potentiation of C fiber-evoked potentials in the rat spinal dorsal horn. Brain Res Bull. 2001;56:575–579. doi: 10.1016/S0361-9230(01)00728-6. [DOI] [PubMed] [Google Scholar]
  • [26].Miyoshi K., Obata K., Kondo T., Okamura H., Noguchi K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci. 2008;28:12775–12787. doi: 10.1523/JNEUROSCI.3512-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Ledeboer A., Sloane E.M., Milligan E.D., Frank M.G., Mahony J.H., Maier S.F., et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115:71–83. doi: 10.1016/j.pain.2005.02.009. [DOI] [PubMed] [Google Scholar]
  • [28].Madiai F., Hussain S.R., Goettl V.M., Burry R.W., Stephens R.L., Jr, Hackshaw K.V. Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp Brain Res. 2003;148:366–376. doi: 10.1007/s00221-002-1286-3. [DOI] [PubMed] [Google Scholar]
  • [29].Stuesse S.L., Crisp T., McBurney D.L., Schechter J.B., Lovell J.A., Cruce W.L. Neuropathic pain in aged rats: behavioral responses and astrocytic activation. Exp Brain Res. 2001;137:219–227. doi: 10.1007/s002210000630. [DOI] [PubMed] [Google Scholar]
  • [30].Zhuang Z.Y., Gerner P., Woolf C.J., Ji R.R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–159. doi: 10.1016/j.pain.2004.12.022. [DOI] [PubMed] [Google Scholar]
  • [31].Liu X.G., Sandkuhler J. Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials. Neuroscience. 1998;86:1209–1216. doi: 10.1016/S0306-4522(98)00107-9. [DOI] [PubMed] [Google Scholar]
  • [32].Lozier A.P., Kendig J.J. Long-term potentiation in an isolated peripheral nerve-spinal cord preparation. J Neurophysiol. 1995;74:1001–1009. doi: 10.1152/jn.1995.74.3.1001. [DOI] [PubMed] [Google Scholar]
  • [33].Hains B.C., Waxman S.G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci. 2006;26:4308–4317. doi: 10.1523/JNEUROSCI.0003-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Mika J., Osikowicz M., Makuch W., Przewlocka B. Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain. Eur J Pharmacol. 2007;560:142–149. doi: 10.1016/j.ejphar.2007.01.013. [DOI] [PubMed] [Google Scholar]
  • [35].Suzumura A. Microglia: immunoregulatory cells in the central nervous system. Nagoya J Med Sci. 2002;65:9–20. [PubMed] [Google Scholar]
  • [36].Watkins L.R., Milligan E.D., Maier S.F. Spinal cord glia: new players in pain. Pain. 2001;93:201–205. doi: 10.1016/S0304-3959(01)00359-1. [DOI] [PubMed] [Google Scholar]
  • [37].Watkins L.R., Milligan E.D., Maier S.F. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol. 2003;521:1–21. [PubMed] [Google Scholar]
  • [38].Wang Q., Rowan M.J., Anwyl R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci. 2004;24:6049–6056. doi: 10.1523/JNEUROSCI.0233-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., et al. Control of synaptic strength by glial TNF alpha. Science. 2002;295:2282–2285. doi: 10.1126/science.1067859. [DOI] [PubMed] [Google Scholar]
  • [40].Pedersen L.M., Jacobsen L.M., Mollerup S., Gjerstad J. Spinal cord long-term potentiation (LTP) is associated with increased dorsal horn gene expression of IL-1beta, GDNF and iNOS. Eur J Pain. 2009;14:255–260. doi: 10.1016/j.ejpain.2009.05.016. [DOI] [PubMed] [Google Scholar]
  • [41].Liu Y.L., Zhou L.J., Hu N.W., Xu J.T., Wu C.Y., Zhang T., et al. Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: The role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology. 2007;52:708–715. doi: 10.1016/j.neuropharm.2006.09.011. [DOI] [PubMed] [Google Scholar]
  • [42].Chizh B.A., Illes P. P2X receptors and nociception. Pharmacol Rev. 2001;53:553–568. [PubMed] [Google Scholar]
  • [43].Fields R.D., Stevens B. ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci. 2000;23:625–633. doi: 10.1016/S0166-2236(00)01674-X. [DOI] [PubMed] [Google Scholar]
  • [44].Haydon P.G. GLIA: listening and talking to the synapse. Nat Rev Neurosci. 2001;2:185–193. doi: 10.1038/35058528. [DOI] [PubMed] [Google Scholar]
  • [45].Wieraszko A., Goldsmith G., Seyfried T.N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 1989;485:244–250. doi: 10.1016/0006-8993(89)90567-2. [DOI] [PubMed] [Google Scholar]
  • [46].Chu Y.X., Zhang Y., Zhang Y.Q., Zhao Z.Q. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun. 2010;24:1176–1189. doi: 10.1016/j.bbi.2010.06.001. [DOI] [PubMed] [Google Scholar]
  • [47].Conti B., Park L.C., Calingasan N.Y., Kim Y., Kim H., Bae Y., et al. Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res. 1999;67:46–52. doi: 10.1016/S0169-328X(99)00034-0. [DOI] [PubMed] [Google Scholar]
  • [48].Prinz M., Hanisch U.K. Murine microglial cells produce and respond to interleukin-18. J Neurochem. 1999;72:2215–2218. doi: 10.1046/j.1471-4159.1999.0722215.x. [DOI] [PubMed] [Google Scholar]
  • [49].Gong Q.J., Li Y.Y., Xin W.J., Zang Y., Ren W.J., Wei X.H., et al. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: the roles of P2X4 receptors and p38 MAPK in microglia. Glia. 2009;57:583–591. doi: 10.1002/glia.20786. [DOI] [PubMed] [Google Scholar]
  • [50].Tsuda M., Shigemoto-Mogami Y., Koizumi S., Mizokoshi A., Kohsaka S., Salter M.W., et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature. 2003;424:778–783. doi: 10.1038/nature01786. [DOI] [PubMed] [Google Scholar]
  • [51].Milligan E.D., Twining C., Chacur M., Biedenkapp J., O’Connor K., Poole S., et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003;23:1026–1040. doi: 10.1523/JNEUROSCI.23-03-01026.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Schreiber K.L., Beitz A.J., Wilcox G.L. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett. 2008;440:63–67. doi: 10.1016/j.neulet.2008.05.044. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES