Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jan 25;28(1):77–87. doi: 10.1007/s12264-012-1060-x

Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain

Hong Cao 1, Wen-Hua Ren 1, Mu-Ye Zhu 2, Zhi-Qi Zhao 1, Yu-Qiu Zhang 1,
PMCID: PMC5560288  PMID: 22233892

Abstract

Objective

The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain. N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB). The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC.

Methods

Immunohistochemistry and Western blot analysis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo. Double immunostaining was also used to determine the colocalization of pERK and pCREB.

Results

Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC, which was inhibited by the NMDAR antagonist DL-2-amino-5-phospho-novaleric acid. Selective blockade of the NMDAR GluN2B subunit and the glycinebinding site, or degradation of endogenous D-serine, a co-agonist for the glycine site, significantly decreased the up-regulation of pERK and pCREB expression in the rACC. Further, the activated ERK predominantly colocalized with CREB.

Conclusion

Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats, and these might be fundamental molecular mechanisms underlying pain affect.

Keywords: N-methyl-D-aspartate receptor, glycine site, GluN2B, D-serine, extracellular regulated kinase/cAMPresponse element-binding protein signaling pathway, rostral anterior cingulate cortex

References

  • [1].Sewards T.V., Sewards M.A. Separate, parallel sensory and hedonic pathways in the mammalian somatosensory system. Brain Res Bull. 2002;58:243–260. doi: 10.1016/S0361-9230(02)00783-9. [DOI] [PubMed] [Google Scholar]
  • [2].Foltz E.L., White L.E. Pain ‘relief’ by frontal cingulumotomy. J Neurosurg. 1962;19:89–100. doi: 10.3171/jns.1962.19.2.0089. [DOI] [PubMed] [Google Scholar]
  • [3].Gao Y.J., Zhao Z.Q., Zhang Y.Q. The afferent projection of the rostral anterior cingulate cortex in the rat: a fluorogold retrograde tracing study. Chin J Neuroanatomy. 2005;21(4):355–359. [Google Scholar]
  • [4].Rainville P., Duncan G.H., Price D.D., Carrier B., Bushnell M.C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277:968–971. doi: 10.1126/science.277.5328.968. [DOI] [PubMed] [Google Scholar]
  • [5].Cao H., Gao Y.J., Ren W.H., Duan K.Z., Li T.T., Cui Y.H., et al. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction and expression of affective pain. J Neurosci. 2009;29(10):3307–3321. doi: 10.1523/JNEUROSCI.4300-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Johansen J.P., Fields H.L., Manning B.H. The affective component of pain in rodents: Direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98(14):8077–8082. doi: 10.1073/pnas.141218998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Johansen J.P., Fields H.L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat Neurosci. 2004;7(4):398–403. doi: 10.1038/nn1207. [DOI] [PubMed] [Google Scholar]
  • [8].Lei L.G., Sun S., Gao Y.J., Zhao Z.Q., Zhang Y.Q. NMDA receptors in the anterior cingulate cortex mediate pain-related aversion. Exp Neurol. 2004;189:413–421. doi: 10.1016/j.expneurol.2004.06.012. [DOI] [PubMed] [Google Scholar]
  • [9].Monyer H., Burnashev N., Laurie D.J., Sakmann B., Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–540. doi: 10.1016/0896-6273(94)90210-0. [DOI] [PubMed] [Google Scholar]
  • [10].Li T.T., Ren W.H., Xiao X., Nan J., Cheng L.Z., Zhang X.H., et al. NMDA NR2A and NR2B receptors in the rostral anterior cingulate cortex contribute to pain-related aversion in male rats. Pain. 2009;146:183–193. doi: 10.1016/j.pain.2009.07.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Ren W.H., Guo J.D., Cao H., Wang H., Wang P.F., Sha H., et al. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem. 2006;98(4):1344–1344. doi: 10.1111/j.1471-4159.2006.04046.x. [DOI] [PubMed] [Google Scholar]
  • [12].Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. New York: Academic; 1998. [DOI] [PubMed] [Google Scholar]
  • [13].Zhao M.G., Toyoda H., Lee Y.S., Wu L.J., Ko S.W., Zhang X.H., et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron. 2005;47:859–872. doi: 10.1016/j.neuron.2005.08.014. [DOI] [PubMed] [Google Scholar]
  • [14].Cao H., Cui Y.H., Zhao Z.Q., Cao X.H., Zhang Y.Q. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction of long-term potentiation in rats. Neurosci Bull. 2009;25(5):301–308. doi: 10.1007/s12264-009-0904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Impey S., Obrietan K., Storm D.R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron. 1999;23:11–14. doi: 10.1016/S0896-6273(00)80747-3. [DOI] [PubMed] [Google Scholar]
  • [16].Andersen J.D., Pouzet B. Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology. 2004;29:1080–1090. doi: 10.1038/sj.npp.1300394. [DOI] [PubMed] [Google Scholar]
  • [17].Malenka R.C., Nicoll R.A. Long term potential — a decade of progress? Science. 1999;285:1870–1874. doi: 10.1126/science.285.5435.1870. [DOI] [PubMed] [Google Scholar]
  • [18].Newcomer J.W., Farber N.B., Jevtovic-Todorovic V., Selke G., Melson A.K., Hershey T., et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neurop sychopharmacology. 1999;20:106–118. doi: 10.1016/S0893-133X(98)00067-0. [DOI] [PubMed] [Google Scholar]
  • [19].Zhang H.T., Crissman A.M., Dorairaj N.R., Chandler L.J., O’Donnell J.M. Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology. 2000;23:198–204. doi: 10.1016/S0893-133X(00)00108-1. [DOI] [PubMed] [Google Scholar]
  • [20].Ghosh A., Greenberg M.E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268:239–247. doi: 10.1126/science.7716515. [DOI] [PubMed] [Google Scholar]
  • [21].Sweatt J.D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76:1–10. doi: 10.1046/j.1471-4159.2001.00054.x. [DOI] [PubMed] [Google Scholar]
  • [22].Wei F., Vadakkan K.I., Toyoda H., Wu L.J., Zhao M.G., Xu H., et al. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci. 2006;263:851–861. doi: 10.1523/JNEUROSCI.3292-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].English J.D., Sweatt J.D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 1997;272:19103–19106. doi: 10.1074/jbc.272.31.19103. [DOI] [PubMed] [Google Scholar]
  • [24].Finkbeiner S., Greenberg M.E. Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 1996;16:233–236. doi: 10.1016/S0896-6273(00)80040-9. [DOI] [PubMed] [Google Scholar]
  • [25].Ji R.R., Zhang Y.Q. The role of MAPK kinase cascades in cell signaling, neural plasticity and pain facilitation. Neurosci Bull. 2005;21(1):1–9. [Google Scholar]
  • [26].Wu H.W., Li H.F., Guo J. N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II in rat hippocampus after cerebral ischemia. Neurosci Bull. 2007;23(2):107–112. doi: 10.1007/s12264-007-0015-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Xia Z., Dudek H., Miranti C.K., Greenberg M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996;16:5425–5536. doi: 10.1523/JNEUROSCI.16-17-05425.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Krapivinsky G., Krapivinsky L., Manasian Y., Ivanov A., Tyzio R., Pellegrino C., et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40:775–784. doi: 10.1016/S0896-6273(03)00645-7. [DOI] [PubMed] [Google Scholar]
  • [29].Kim M.J., Dunah A.W., Wang Y.T., Sheng M. Differential roles of NR2A and NR2B-containing NMDA receptors in RAS-ERK signaling and AMPA receptor trafficking. Neuron. 2005;46:745–760. doi: 10.1016/j.neuron.2005.04.031. [DOI] [PubMed] [Google Scholar]
  • [30].Ginty D.D., Kornhauser J.M., Thompson M.A., Bading H., Mayo K.E., Takahashi J.S., et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993;260:238–241. doi: 10.1126/science.8097062. [DOI] [PubMed] [Google Scholar]
  • [31].Lei L.G., Zhang Y.Q., Zhao Z.Q. Pain-related aversion and Fos expression in the central nervous system in rats. Neuroreport. 2004;15:67–71. doi: 10.1097/00001756-200401190-00014. [DOI] [PubMed] [Google Scholar]
  • [32].Bement M.K.H., Sluka K.A. Co-localization of p-CREB and p-NR1 in spinothalamic neurons in a chronic muscle pain model. Neurosci Lett. 2007;418:22–27. doi: 10.1016/j.neulet.2007.02.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Lee D.K., Bian S., Rahman M.A., Shim Y.B., Shim I., Choe E.S. Repeated cocaine administration increases N-methyl-D-aspartate NR1 subunit, extracellular signal-regulated kinase and cyclic AMP response element-binding protein phosphorylation and glutamate release in the rat dorsal striatum. Eur J Pharmacol. 2008;590:157–162. doi: 10.1016/j.ejphar.2008.06.048. [DOI] [PubMed] [Google Scholar]
  • [34].Chen L., Miyamoto Y., Furuya K., Mori N., Sokabe M. PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation international cooperative research CREB signaling. J Neurophysiol. 2007;98:1538–1548. doi: 10.1152/jn.01151.2006. [DOI] [PubMed] [Google Scholar]
  • [35].Dudman J.T., Eaton M.E., Rajadhyaksha A., Macias W., Taher M., Barczak M., et al. Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem. 2003;87:922–934. doi: 10.1046/j.1471-4159.2003.02067.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Chen M., Lu T.J., Chen X.J., Zhou Y., Chen Q., Feng X.Y., et al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stoke. 2008;39:3042–3048. doi: 10.1161/STROKEAHA.108.521898. [DOI] [PubMed] [Google Scholar]
  • [37].Matthews R.P., Guthrie C.R., Wailes L.M., Zhao X., Means A.R., McKnight G.S. Calcium/Calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 1994;14(9):6107–6116. doi: 10.1128/mcb.14.9.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Zhang Y.Q., Zhao Z.Q., Ji R.R. Emotional distress and related memory of pain: a neurobiological review. Neurosci. Bull. 2005;21(1):10–18. [Google Scholar]
  • [39].Matsuda S., Matsuzawa D., Nakazawa K., Sutoh C., Ohtsuka H., Ishii D., et al. D-serine enhances extinction of auditory cued fear conditioning via ERK1/2 phosphorylation in mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34:895–902. doi: 10.1016/j.pnpbp.2010.04.013. [DOI] [PubMed] [Google Scholar]
  • [40].Hashimoto A., Oka T. Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol. 1997;52:325–353. doi: 10.1016/S0301-0082(97)00019-1. [DOI] [PubMed] [Google Scholar]
  • [41].Schell M.J., Brady R.O., Jr, Molliver M.E., Snyder S.H. D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci. 1997;17:1604–1615. doi: 10.1523/JNEUROSCI.17-05-01604.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [42].Schell M.J., Molliver M.E., Snyder S.H. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995;92:3948–3952. doi: 10.1073/pnas.92.9.3948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Hashimoto A., Oka T., Nishikawa T. Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience. 1995;66:635–643. doi: 10.1016/0306-4522(94)00597-X. [DOI] [PubMed] [Google Scholar]
  • [44].Berger A.J., Dieudonne S., Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol. 1998;80:3336–3340. doi: 10.1152/jn.1998.80.6.3336. [DOI] [PubMed] [Google Scholar]
  • [45].Mothet J.P., Parent A.T., Wolosker H., Brady R.O., Jr, Linden D.J., Ferris C.D., et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97:4926–4931. doi: 10.1073/pnas.97.9.4926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Stevens E.R., Esguerra M., Kim P.M., Newman E.A., Snyder S.H., Zahs K.R., et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A. 2003;100:6789–6794. doi: 10.1073/pnas.1237052100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES