Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jan 25;28(1):61–68. doi: 10.1007/s12264-012-1063-7

Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

Wen-Zhen Shi 1, Chun-Zhen Zhao 1, Bing Zhao 1, Xiao-Liang Zheng 1, San-Hua Fang 1, Yun-Bi Lu 1, Wei-Ping Zhang 1, Zhong Chen 1, Er-Qing Wei 1,
PMCID: PMC5560290  PMID: 22233890

Abstract

Objective

To determine whether aquaporin-4 (AQP4) regulates acute lesions, delayed lesions, and the associated microglial activation after cryoinjury to the brain.

Methods

Brain cryoinjury was applied to AQP4 knockout (KO) and wild-type mice. At 24 h and on days 7 and 14 after cryoinjury, lesion volume, neuronal loss, and densities of microglia and astrocytes were determined, and their changes were compared between AQP4 KO and wild-type mice.

Results

Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury, but worsened on days 7 and 14, compared to those in wild-type mice. Besides, microglial density increased more, and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.

Conclusion

AQP4 deficiency ameliorates acute lesions, but worsens delayed lesions, perhaps due to the microgliosis in the late phase.

Keywords: aquaporin-4, gene deficiency, cryoinjury, microglia, astrocyte

References

  • [1].Saadoun S., Papadopoulos M.C. Aquaporin-4 in brain and spinal cord oedema. Neuroscience. 2010;168:1036–1046. doi: 10.1016/j.neuroscience.2009.08.019. [DOI] [PubMed] [Google Scholar]
  • [2].Yukutake Y., Yasui M. Regulation of water permeability through aquaporin-4. Neuroscience. 2010;168:885–891. doi: 10.1016/j.neuroscience.2009.10.029. [DOI] [PubMed] [Google Scholar]
  • [3].Papadopoulos M.C., Verkman A.S. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22:778–784. doi: 10.1007/s00467-006-0411-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Saadoun S., Papadopoulos M.C., Watanabe H., Yan D., Manley G.T., Verkman A.S. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci. 2005;118:5691–5698. doi: 10.1242/jcs.02680. [DOI] [PubMed] [Google Scholar]
  • [5].Auguste K.I., Jin S., Uchida K., Yan D., Manley G.T., Papadopoulos M.C., et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J. 2007;21:108–116. doi: 10.1096/fj.06-6848com. [DOI] [PubMed] [Google Scholar]
  • [6].Thrane A.S., Rappold P.M., Fujita T., Torres A., Bekar L.K., Takano T., et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci U S A. 2011;108:846–851. doi: 10.1073/pnas.1015217108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Ding J.H., Sha L.L., Chang J., Zhou X.Q., Fan Y., Hu G. Alterations of striatal neurotransmitter release in aquaporin-4 deficient mice: An in vivo microdialysis study. Neurosci Lett. 2007;422:175–180. doi: 10.1016/j.neulet.2007.06.018. [DOI] [PubMed] [Google Scholar]
  • [8].Taya K., Marmarou C.R., Okuno K., Prieto R., Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma. 2010;27:229–239. doi: 10.1089/neu.2009.0933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Oliva A.A., Jr., Kang Y., Truettner J.S., Sanchez-Molano J., Furones C., Yool A.J., et al. Fluid-percussion brain injury induces changes in aquaporin channel expression. Neuroscience. 2011;180:272–279. doi: 10.1016/j.neuroscience.2011.02.020. [DOI] [PubMed] [Google Scholar]
  • [10].Rao K.V., Reddy P.V., Curtis K.M., Norenberg M.D. Aquaporin-4 expression in cultured astrocytes after fluid percussion injury. J Neurotrauma. 2011;28:371–381. doi: 10.1089/neu.2010.1705. [DOI] [PubMed] [Google Scholar]
  • [11].Papadopoulos M.C., Manley G.T., Krishna S., Verkman A.S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–1293. doi: 10.1096/fj.04-1723fje. [DOI] [PubMed] [Google Scholar]
  • [12].Hortobagyi T., Hortobagyi S., Gorlach C., Harkany T., Benyo Z., Gorogh T., et al. A novel brain trauma model in the mouse: effects of dexamethasone treatment. Pflugers Arch. 2000;441:409–415. doi: 10.1007/s004240000441. [DOI] [PubMed] [Google Scholar]
  • [13].Wang J., Takeuchi K., Ookawara S. Changes of perivascular macrophages in the process of brain edema induced by cold injury. Acta Neurochir Suppl. 2003;86:281–285. doi: 10.1007/978-3-7091-0651-8_61. [DOI] [PubMed] [Google Scholar]
  • [14].Moon C., Lee J., Ahn M., Shin T. Involvement of Disabled-2 protein in the central nervous system inflammation following experimental cryoinjury of rat brains. Neurosci Lett. 2005;378:88–91. doi: 10.1016/j.neulet.2004.12.016. [DOI] [PubMed] [Google Scholar]
  • [15].Shin T., Ahn M., Kim H., Moon C., Kang T.Y., Lee J.M., et al. Temporal expression of osteopontin and CD44 in rat brains with experimental cryolesions. Brain Res. 2005;1041:95–101. doi: 10.1016/j.brainres.2005.02.019. [DOI] [PubMed] [Google Scholar]
  • [16].Quintana A., Giralt M., Rojas S., Penkowa M., Campbell I.L., Hidalgo J., et al. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res. 2005;82:701–716. doi: 10.1002/jnr.20680. [DOI] [PubMed] [Google Scholar]
  • [17].Koedel U., Merbt U.M., Schmidt C., Angele B., Popp B., Wagner H., et al. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. Am J Pathol. 2007;171:200–213. doi: 10.2353/ajpath.2007.060821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Moon C., Ahn M., Kim S., Jin J.K., Sim K.B., Kim H.M., et al. Temporal patterns of the embryonic intermediate filaments nestin and vimentin expression in the cerebral cortex of adult rats after cryoinjury. Brain Res. 2004;1028:238–242. doi: 10.1016/j.brainres.2004.09.022. [DOI] [PubMed] [Google Scholar]
  • [19].Hirano S., Yonezawa T., Hasegawa H., Hattori S., Greenhill N.S., Davis P.F., et al. Astrocytes express type VIII collagen during the repair process of brain cold injury. Biochem Biophys Res Commun. 2004;317:437–443. doi: 10.1016/j.bbrc.2004.03.049. [DOI] [PubMed] [Google Scholar]
  • [20].Zhang L., Zhang W.P., Chen K.D., Qian X.D., Fang S.H., Wei E.Q. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci. 2007;80:530–537. doi: 10.1016/j.lfs.2006.09.039. [DOI] [PubMed] [Google Scholar]
  • [21].Fan Y., Zhang J., Sun X.L., Gao L., Zeng X.N., Ding J.H., et al. Sex- and region-specific alterations of basal amino acid and monoamine metabolism in the brain of aquaporin-4 knockout mice. J Neurosci Res. 2005;82:458–464. doi: 10.1002/jnr.20664. [DOI] [PubMed] [Google Scholar]
  • [22].Manley G.T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A.W., et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–163. doi: 10.1038/72256. [DOI] [PubMed] [Google Scholar]
  • [23].Trabold R., Schueler O.G., Eriskat J., Plesnila N., Baethmann A.J., Back T. Arterial hypotension triggers perifocal depolarizations and aggravates secondary damage in focal brain injury. Brain Res. 2006;1071:237–244. doi: 10.1016/j.brainres.2005.11.095. [DOI] [PubMed] [Google Scholar]
  • [24].Weinzierl M.R., Laurer H.L., Fuchs M., Wolf-Ingo S., Mautes A.E. Changes in regional energy metabolism after cortical cold lesion in the rat brain. J Mol Neurosci. 2002;18:247–250. doi: 10.1385/JMN:18:3:247. [DOI] [PubMed] [Google Scholar]
  • [25].Kuppers E., Gleiser C., Brito V., Wachter B., Pauly T., Hirt B., et al. AQP4 expression in striatal primary cultures is regulated by dopamine — implications for proliferation of astrocytes. Eur J Neurosci. 2008;28:2173–2182. doi: 10.1111/j.1460-9568.2008.06531.x. [DOI] [PubMed] [Google Scholar]
  • [26].Sofroniew M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–647. doi: 10.1016/j.tins.2009.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Bush T.G., Puvanachandra N., Horner C.H., Polito A., Ostenfeld T., Svendsen C.N., et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23:297–308. doi: 10.1016/S0896-6273(00)80781-3. [DOI] [PubMed] [Google Scholar]
  • [28].Faulkner J.R., Herrmann J.E., Woo M.J., Tansey K.E., Doan N.B., Sofroniew M.V. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Okada S., Nakamura M., Katoh H., Miyao T., Shimazaki T., Ishii K., et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med. 2006;12:829–834. doi: 10.1038/nm1425. [DOI] [PubMed] [Google Scholar]
  • [30].Herrmann J.E., Imura T., Song B., Qi J., Ao Y., Nguyen T.K., et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28:7231–7243. doi: 10.1523/JNEUROSCI.1709-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Liedtke W., Edelmann W., Chiu F.C., Kucherlapati R., Raine C.S. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol. 1998;152:251–259. [PMC free article] [PubMed] [Google Scholar]
  • [32].Voskuhl R.R., Peterson R.S., Song B., Ao Y., Morales L.B., Tiwari-Woodruff S., et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29:11511–11522. doi: 10.1523/JNEUROSCI.1514-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Aoki-Yoshino K., Uchihara T., Duyckaerts C., Nakamura A., Hauw J.J., Wakayama Y. Enhanced expression of aquaporin 4 in human brain with inflammatory diseases. Acta Neuropathol. 2005;110:281–288. doi: 10.1007/s00401-005-1052-2. [DOI] [PubMed] [Google Scholar]
  • [34].Miyamoto K., Nagaosa N., Motoyama M., Kataoka K., Kusunoki S. Upregulation of water channel aquaporin-4 in experimental autoimmune encephalomyelitis. J Neurol Sci. 2009;276:103–107. doi: 10.1016/j.jns.2008.09.014. [DOI] [PubMed] [Google Scholar]
  • [35].Huang X.N., Wang W.Z., Fu J., Wang H.B. The relationship between aquaporin-4 expression and blood-brain and spinal cord barrier permeability following experimental autoimmune encephalomyelitis in the rat. Anat Rec (Hoboken) 2011;294:46–54. doi: 10.1002/ar.21286. [DOI] [PubMed] [Google Scholar]
  • [36].Graber D.J., Levy M., Kerr D., Wade W.F. Neuromyelitis optica pathogenesis and aquaporin 4. J Neuroinflammation. 2008;5:22. doi: 10.1186/1742-2094-5-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Hinson S.R., McKeon A., Lennon V.A. Neurological autoimmunity targeting aquaporin-4. Neuroscience. 2010;168:1009–1018. doi: 10.1016/j.neuroscience.2009.08.032. [DOI] [PubMed] [Google Scholar]
  • [38].St Hillaire C., Vargas D., Pardo C.A., Gincel D., Mann J., Rothstein J.D., et al. Aquaporin 4 is increased in association with human immunodeficiency virus dementia: implications for disease pathogenesis. J Neurovirol. 2005;11:535–543. doi: 10.1080/13550280500385203. [DOI] [PubMed] [Google Scholar]
  • [39].Martinez Torres F.J., Volcker D., Dorner N., Lenhard T., Nielsen S., Haas J., et al. Aquaporin 4 regulation during acute and long-term experimental Herpes simplex virus encephalitis. J Neurovirol. 2007;13:38–46. doi: 10.1080/13550280601145340. [DOI] [PubMed] [Google Scholar]
  • [40].Wu H., Zhang Z., Li Y., Zhao R., Li H., Song Y., et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int. 2010;57:248–253. doi: 10.1016/j.neuint.2010.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Sharma R., Fischer M.T., Bauer J., Felts P.A., Smith K.J., Misu T., et al. Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol. 2010;120:223–236. doi: 10.1007/s00401-010-0704-z. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES