Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jan 25;28(1):69–76. doi: 10.1007/s12264-012-1065-5

Knock-down of postsynaptic density protein 95 expression by antisense oligonucleotides protects against apoptosis-like cell death induced by oxygen-glucose deprivation in vitro

Jing-Zhi Yan 1,2, Yong Liu 1,2, Yan-Yan Zong 1,2, Guang-Yi Zhang 1,2,
PMCID: PMC5560291  PMID: 22233891

Abstract

Objective

Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PSD-95 in tyrosine phosphorylation of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose deprivation (OGD) in cultured rat cortical neurons were investigated.

Methods

We used immunoprecipitation and immunoblotting to detect PSD-95 protein level, tyrosine phosphorylation level of NR2A, and the interaction between PSD-95 and NR2A or Src. Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining.

Results

Tyrosine phosphorylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD. The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD, but not by missense oligonucleotides or vehicle. PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src, while NR2A expression did not change under this condition.

Conclusion

PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase. Inhibition of PSD-95 expression can be neuroprotective against apoptosislike cell death after recovery from OGD.

Keywords: postsynaptic density protein 95, N-methyl-D-aspartate receptor, oxygen-glucose deprivation, tyrosine phosphorylation, Src, cortical neurons

Footnotes

These authors contributed equally to this work.

References

  • [1].Beique J.C., Andrade R. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol. 2003;546:859–867. doi: 10.1113/jphysiol.2002.031369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Sattler R., Xiong Z., Lu W.Y., Hafner M., MacDonald J.F., Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 1999;284:1845–1848. doi: 10.1126/science.284.5421.1845. [DOI] [PubMed] [Google Scholar]
  • [3].Kim E., Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5:771–781. doi: 10.1038/nrn1517. [DOI] [PubMed] [Google Scholar]
  • [4].Sheng M., Kim M.J. Postsynaptic signaling and plasticity mechanisms. Science. 2002;298:776–780. doi: 10.1126/science.1075333. [DOI] [PubMed] [Google Scholar]
  • [5].Salter M.W., Kalia L.V. Src kinases: a hub for NMDA receptor regu lation. Nat Rev Neurosci. 2004;5:317–328. doi: 10.1038/nrn1368. [DOI] [PubMed] [Google Scholar]
  • [6].Furukawa H., Singh S.K., Mancusso R., Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–192. doi: 10.1038/nature04089. [DOI] [PubMed] [Google Scholar]
  • [7].Popescu G. Mechanism-based targeting of NMDA receptor functions. Cell Mol Life Sci. 2005;62:2100–2111. doi: 10.1007/s00018-005-5227-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Ulbrich M.H., Isacoff E.Y. Subunit counting in membrane-bound proteins. Nat Methods. 2007;4:319–321. doi: 10.1038/NMETH1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Ulbrich M.H., Isacoff E.Y. Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci U S A. 2008;105:14163–14168. doi: 10.1073/pnas.0802075105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Sheng M. The postsynaptic NMDA-receptor-PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci. 2001;114:1251. doi: 10.1242/jcs.114.7.1251. [DOI] [PubMed] [Google Scholar]
  • [11].Cui H., Hayashi A., Sun H.S., Belmares M.P., Cobey C., Phan T., et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci. 2007;27:9901–9915. doi: 10.1523/JNEUROSCI.1464-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Soderling T.R., Derkach V.A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000;23:75–80. doi: 10.1016/S0166-2236(99)01490-3. [DOI] [PubMed] [Google Scholar]
  • [13].Rosenblum K., Berman D.E., Hazvi S., Lamprecht R., Dudai Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci. 1997;17:5129–5135. doi: 10.1523/JNEUROSCI.17-13-05129.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Barki-Harrington L., Elkobi A., Tzabary T., Rosenblum K. Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation. J Neurosci. 2009;29:9219–9226. doi: 10.1523/JNEUROSCI.5667-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Kalia L.V., Gingrich J.R., Salter M.W. Src in synaptic transmission and plasticity. Oncogene. 2004;23:8007–8016. doi: 10.1038/sj.onc.1208158. [DOI] [PubMed] [Google Scholar]
  • [16].Lu Y.M., Roder J.C., Davidow J., Salter M.W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science. 1998;279:1363–1362. doi: 10.1126/science.279.5355.1363. [DOI] [PubMed] [Google Scholar]
  • [17].Tezuka T., Umemori H., Akiyama T., Nakanishi S., Yamamoto T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the Nmethyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A. 1999;96:435–440. doi: 10.1073/pnas.96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Kalia L.V., Salter M.W. Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology. 2003;45:720–728. doi: 10.1016/S0028-3908(03)00313-7. [DOI] [PubMed] [Google Scholar]
  • [19].Hou X.Y., Zhang G., Yan J.Z., Chen M., Liu Y. Activation of NMDA receptors and L-type voltage-gated calcium channels mediates enhanced formation of Fyn-PSD95-NR2A complex after transient brain ischemia. Brain Res. 2002;955:123–132. doi: 10.1016/S0006-8993(02)03376-0. [DOI] [PubMed] [Google Scholar]
  • [20].Ali D.W., Salter M.W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol. 2001;11:336–342. doi: 10.1016/S0959-4388(00)00216-6. [DOI] [PubMed] [Google Scholar]
  • [21].Huang Y., Lu W., Ali D.W., Pelkey K.A., Pitcher G.M., Lu Y.M., et al. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron. 2001;29:485–496. doi: 10.1016/S0896-6273(01)00220-3. [DOI] [PubMed] [Google Scholar]
  • [22].Tauskela J.S., Mealing G., Comas T., Brunette E., Monette R., Small D.L., et al. Protection of cortical neurons against oxygen-glucose deprivation and N-methyl-D-aspartate by DIDS and SITS. Eur J Pharmacol. 2003;464(1):17–25. doi: 10.1016/S0014-2999(03)01371-2. [DOI] [PubMed] [Google Scholar]
  • [23].Sattler R., Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med. 2000;78:3–13. doi: 10.1007/s001090000077. [DOI] [PubMed] [Google Scholar]
  • [24].Liu Y., Zhang G.Y., Gao C., Hou X.Y. NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res. 2001;909:51–58. doi: 10.1016/S0006-8993(01)02619-1. [DOI] [PubMed] [Google Scholar]
  • [25].O’Brien R.J., Lau L.F., Huganir R.L. Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol. 1998;8:364–369. doi: 10.1016/S0959-4388(98)80062-7. [DOI] [PubMed] [Google Scholar]
  • [26].Kornau H.C., Seeburg P.H., Kennedy M.B. Interaction of ion channels and receptors with PDZ domain proteins. Curr Opin Neurobiol. 1997;7:368–373. doi: 10.1016/S0959-4388(97)80064-5. [DOI] [PubMed] [Google Scholar]
  • [27].Lin Y., Skeberdis V.A., Francesconi A., Bennett M.V., Zukin R.S. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci. 2004;24:10138–10148. doi: 10.1523/JNEUROSCI.3159-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Zhou L., Li F., Xu H.B., Luo C.X., Wu H.Y., Zhu M.M., et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16:1439–1443. doi: 10.1038/nm.2245. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES