Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Jun 3;26(3):205–210. doi: 10.1007/s12264-010-1117-7

Dose- and time-dependent α-synuclein aggregation induced by ferric iron in SK-N-SH cells

铁离子对 α- 突触核蛋白聚集的诱发作用具有剂量和时间依赖性

Wen-Jing Li 1, Hong Jiang 1, Ning Song 1, Jun-Xia Xie 1,
PMCID: PMC5560295  PMID: 20502498

Abstract

Objective

Intracellular formation of Lewy body (LB) is one of the hallmarks of Parkinson’s disease. The main component of LB is aggregated α-synuclein, present in the substantia nigra where iron accumulation also occurs. The present study was aimed to study the relationship between iron and α-synuclein aggregation.

Methods

SK-N-SH cells were treated with different concentrations of ferric iron for 24 h or 48 h. MTT assay was conducted to determine the cell viability. Thioflavine S staining was used to detect α-synuclein aggregation.

Results

With the increase of iron concentration, the cell viability decreased significantly. At the concentrations of 5 mmol/L and 10 mmol/L, iron induced α-synuclein aggregation more severely than at the concentration of 1 mmol/L. Besides, 48-h treatment-induced aggregation was more severe than that induced by 24-h treatment, at the corresponding iron concentrations.

Conclusion

Ferric iron can induce α-synuclein aggregation, which is toxic to the cells, in a dose- and time-dependent way.

Keywords: Parkinson’s disease, α-synuclein, ferric ammonium citrate

References

  • [1].Halliday G.M., Del Tredici K., Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J Neural Transm Suppl. 2006;70:99–103. doi: 10.1007/978-3-211-45295-0_16. [DOI] [PubMed] [Google Scholar]
  • [2].Shults C.W. Lewy bodies. Proc Natl Acad Sci U S A. 2006;103:1661–1668. doi: 10.1073/pnas.0509567103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. α-Synuclein in Lewy bodies. Nature. 1997;388:839–840. doi: 10.1038/42166. [DOI] [PubMed] [Google Scholar]
  • [4].Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., de Silva H.A., et al. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron. 1995;14:467–475. doi: 10.1016/0896-6273(95)90302-X. [DOI] [PubMed] [Google Scholar]
  • [5].Wislet-Gendebien S., D’souza C., Kawarai T., St George-Hyslop P., Westaway D., Fraser P., et al. Cytosolic proteins regulate α-synuclein dissociation from presynaptic membranes. J Biol Chem. 2006;281:32148–32155. doi: 10.1074/jbc.M605965200. [DOI] [PubMed] [Google Scholar]
  • [6].Friedlich A.L., Tanzi R.E., Rogers J.T. The 5′-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry. 2007;12:222–223. doi: 10.1038/sj.mp.4001937. [DOI] [PubMed] [Google Scholar]
  • [7].Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–108. doi: 10.1038/ng0298-106. [DOI] [PubMed] [Google Scholar]
  • [8].Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047. doi: 10.1126/science.276.5321.2045. [DOI] [PubMed] [Google Scholar]
  • [9].Zarranz J.J., Alegre J., Gomez-Esteban J.C., Lezcano E., Ros R., Ampuero I., et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–173. doi: 10.1002/ana.10795. [DOI] [PubMed] [Google Scholar]
  • [10].Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., et al. α-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841. doi: 10.1126/science.1090278. [DOI] [PubMed] [Google Scholar]
  • [11].Dexter D.T., Wells F.R., Lees A.J., Agid F., Agid Y., Jenner P., et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem. 1989;52:1830–1836. doi: 10.1111/j.1471-4159.1989.tb07264.x. [DOI] [PubMed] [Google Scholar]
  • [12].Good P.F., Olanow C.W., Perl D.P. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res. 1992;593:343–346. doi: 10.1016/0006-8993(92)91334-B. [DOI] [PubMed] [Google Scholar]
  • [13].Martin W.R., Wieler M., Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70:1411–1417. doi: 10.1212/01.wnl.0000286384.31050.b5. [DOI] [PubMed] [Google Scholar]
  • [14].Oakley A.E., Collingwood J.F., Dobson J., Love G., Perrott H.R., Edwardson J.A., et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology. 2007;68:1820–1825. doi: 10.1212/01.wnl.0000262033.01945.9a. [DOI] [PubMed] [Google Scholar]
  • [15].Riederer P., Sofic E., Rausch W.D., Schmidt B., Reynolds G.P., Jellinger K., et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52:515–520. doi: 10.1111/j.1471-4159.1989.tb09150.x. [DOI] [PubMed] [Google Scholar]
  • [16].Zecca L., Berg D., Arzberger T., Ruprecht P., Rausch W.D., Musicco M., et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord. 2005;20:1278–1285. doi: 10.1002/mds.20550. [DOI] [PubMed] [Google Scholar]
  • [17].Wang J., Jiang H., Xie J.X. Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system. Neurochem Res. 2004;29:2239–2243. doi: 10.1007/s11064-004-7031-5. [DOI] [PubMed] [Google Scholar]
  • [18].Jiang H., Luan Z., Wang J., Xie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int. 2006;49:605–609. doi: 10.1016/j.neuint.2006.04.015. [DOI] [PubMed] [Google Scholar]
  • [19].Wang J., Jiang H., Xie J.X. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci. 2007;25:2766–2772. doi: 10.1111/j.1460-9568.2007.05515.x. [DOI] [PubMed] [Google Scholar]
  • [20].Ostrerova-Golts N., Petrucelli L., Hardy J., Lee J.M., Farer M., Wolozin B. The A53T α-synuclein mutation increases irondependent aggregation and toxicity. J Neurosci. 2000;20:6048–6054. doi: 10.1523/JNEUROSCI.20-16-06048.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Golts N., Snyder H., Frasier M., Theisler C., Choi P., Wolozin B. Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein. J Biol Chem. 2002;277:16116–16123. doi: 10.1074/jbc.M107866200. [DOI] [PubMed] [Google Scholar]
  • [22].Bharathi, Indi S.S., Rao K.S. Copper- and iron-induced differential fibril formation in α-synuclein: TEM study. Neurosci Lett. 2007;424:78–82. doi: 10.1016/j.neulet.2007.06.052. [DOI] [PubMed] [Google Scholar]
  • [23].Lee H.J., Shin S.Y., Choi C., Lee Y.H., Lee S.J. Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem. 2002;277:5411–5417. doi: 10.1074/jbc.M105326200. [DOI] [PubMed] [Google Scholar]
  • [24].Junxia X., Hong J., Wenfang C., Ming Q. Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson’s disease. Exp Neurol. 2003;182:483–489. doi: 10.1016/S0014-4886(03)00123-7. [DOI] [PubMed] [Google Scholar]
  • [25].Jenner P., Olanow C.W. The pathogenesis of cell death in Parkinson’s disease. Neurology. 2006;66:S24–36. doi: 10.1212/wnl.66.10_suppl_4.s24. [DOI] [PubMed] [Google Scholar]
  • [26].Zhang S., Wang J., Song N., Xie J., Jiang H. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium MPP+-induced apoptosis in MES23.5 cells. Neurobiol Aging. 2009;30:1466–1476. doi: 10.1016/j.neurobiolaging.2007.11.025. [DOI] [PubMed] [Google Scholar]
  • [27].Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;2:125–130. doi: 10.1007/s12264-007-0018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Hirsch E.C., Brandel J.P., Galle P., Javoy-Agid F., Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem. 1991;56:446–451. doi: 10.1111/j.1471-4159.1991.tb08170.x. [DOI] [PubMed] [Google Scholar]
  • [29].He Y., Lee T., Leong S.K. Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning. Free Radic Res. 1999;31:103–112. doi: 10.1080/10715769900301611. [DOI] [PubMed] [Google Scholar]
  • [30].He Y., Thong P.S., Lee T., Leong S.K., Shi C.Y., Wong P.T., et al. Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res. 1996;735:149–153. doi: 10.1016/0006-8993(96)00313-7. [DOI] [PubMed] [Google Scholar]
  • [31].Ma Z.G., Wang J., Jiang H., Liu T.W., Xie J.X. Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. Neuroreport. 2007;18:1181–1185. doi: 10.1097/WNR.0b013e32821c51fe. [DOI] [PubMed] [Google Scholar]
  • [32].Mochizuki H., Imai H., Endo K., Yokomizo K., Murata Y., Hattori N., et al. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett. 1994;168:251–253. doi: 10.1016/0304-3940(94)90462-6. [DOI] [PubMed] [Google Scholar]
  • [33].Temlett J.A., Landsberg J.P., Watt F., Grime G.W. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem. 1994;62:134–146. doi: 10.1046/j.1471-4159.1994.62010134.x. [DOI] [PubMed] [Google Scholar]
  • [34].Wang J., Xu H.M., Yang H.D., Du X.X., Jiang H., Xie J.X. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int. 2009;54:43–48. doi: 10.1016/j.neuint.2008.10.003. [DOI] [PubMed] [Google Scholar]
  • [35].Jiang H., Qian Z.M., Xie J.X. Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice. Acta Physiol Sin. 2003;55:571–576. [PubMed] [Google Scholar]
  • [36].Duda J.E., Lee V.M., Trojanowski J.Q. Neuropathology of synuclein aggregates. J Neurosci Res. 2000;61:121–127. doi: 10.1002/1097-4547(20000715)61:2<121::AID-JNR1>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  • [37].Kostka M., Hogen T., Danzer K.M., Levin J., Habeck M., Wirth A., et al. Single particle characterization of iron-induced pore-forming α-synuclein oligomers. J Biol Chem. 2008;283:10992–11003. doi: 10.1074/jbc.M709634200. [DOI] [PubMed] [Google Scholar]
  • [38].Kehrer J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149:43–50. doi: 10.1016/S0300-483X(00)00231-6. [DOI] [PubMed] [Google Scholar]
  • [39].Souza J.M., Giasson B.I., Chen Q., Lee V.M., Ischiropoulos H. Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000;275:18344–18349. doi: 10.1074/jbc.M000206200. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES