Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Jun 3;26(3):265–271. doi: 10.1007/s12264-010-1217-4

Modulation of the activity of dopaminergic neurons by SK channels: a potential target for the treatment of Parkinson’s disease?

小电导钙激活钾通道对多巴 胺能神经元活性的调节: 可能成为一种治疗帕金森病的新策略

Xiao-Kun Liu 1, Gang Wang 1,, Sheng-Di Chen 1,2,
PMCID: PMC5560298  PMID: 20502506

Abstract

SK channels are small conductance calcium-activated potassium channels that are widely expressed in different neurons with distinct subtypes. They play an important role in modulating synaptic plasticity, dopaminergic neurotransmission, and learning and memory. The present review was mainly focused on the recent findings on the contradictory roles of SK channels in modulating dopaminergic neurons in substantia nigra and in the pathogenesis of Parkinson’s disease (PD). Besides, whether modulation of SK channels could be a potential target for PD treatment was also discussed.

Keywords: small-conductance calcium-activated potassium channel, Parkinson’s disease, afterhyperpolarization, dopaminergic neuron

Footnotes

These authors contributed equally to this work.

Contributor Information

Gang Wang, Email: wgneuron@hotmail.com.

Sheng-Di Chen, Phone: +86-21-64457249, Email: chen_sd@medmail.com.cn.

References

  • [1].Faber E.S., Sah P. Functions of SK channels in central neurons. Clin Exp Pharmacol Physiol. 2007;34:1077–1083. doi: 10.1111/j.1440-1681.2007.04725.x. [DOI] [PubMed] [Google Scholar]
  • [2].Blank T., Nijholt I., Kye M.J., Spiess J. Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord. 2004;3:161–167. doi: 10.2174/1568007043337472. [DOI] [PubMed] [Google Scholar]
  • [3].Wang G., Zeng J., Ren R., Chen S. Potassium channels in the basal ganglia: promising new targets for the treatment of Parkinson’s disease. Front Biosci. 2008;13:3825–3838. doi: 10.2741/2971. [DOI] [PubMed] [Google Scholar]
  • [4].Zeng J., Wang G., Chen S.D. ATP-sensitive potassium channels: novel potential roles in Parkinson’s disease. Neurosci Bull. 2007;23:370–376. doi: 10.1007/s12264-007-0055-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Pedarzani P., Stocker M. Molecular and cellular basis of smalland intermediate-conductance,calcium-activated potassium channel function in the brain. Cell Mol Life Sci. 2008;65:3196–3217. doi: 10.1007/s00018-008-8216-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Vergara C., Latorre R., Marrion N.V., Adelman J.P. Calcium-activated potassium channels. Curr Opin Neurobiol. 1998;8:321–329. doi: 10.1016/S0959-4388(98)80056-1. [DOI] [PubMed] [Google Scholar]
  • [7].Bond C.T., Maylie J., Adelman J.P. Small-conductance calciumactivated potassium channels. Ann N Y Acad Sci. 1999;868:370–378. doi: 10.1111/j.1749-6632.1999.tb11298.x. [DOI] [PubMed] [Google Scholar]
  • [8].Maylie J., Bond C.T., Herson P.S., Lee W.S., Adelman J.P. Small conductance Ca2+-activated K+ channels and calmodulin. J Physiol. 2004;554:255–261. doi: 10.1113/jphysiol.2003.049072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Liegeois J.F., Mercier F., Graulich A., Graulich-Lorge F., Scuvee-Moreau J., Seutin V. Modulation of small conductance calciumactivated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem. 2003;10:625–647. doi: 10.2174/0929867033457908. [DOI] [PubMed] [Google Scholar]
  • [10].Tacconi S., Carletti R., Bunnemann B., Plumpton C., Merlo Pich E., Terstappen G.C. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Neuroscience. 2001;102:209–215. doi: 10.1016/S0306-4522(00)00486-3. [DOI] [PubMed] [Google Scholar]
  • [11].Rimini R., Rimland J.M., Terstappen G.C. Quantitative expression analysis of the small conductance calcium-activated potassium channels, SK1, SK2 and SK3, in human brain. Brain Res Mol Brain Res. 2000;85:218–220. doi: 10.1016/S0169-328X(00)00255-2. [DOI] [PubMed] [Google Scholar]
  • [12].Sah P., Faber E.S. Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol. 2002;66:345–353. doi: 10.1016/S0301-0082(02)00004-7. [DOI] [PubMed] [Google Scholar]
  • [13].Bean A.J., Roth R.H. Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of median forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreceptors. J Neurosci. 1991;11:2694–2702. doi: 10.1523/JNEUROSCI.11-09-02694.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Stocker M., Krause M., Pedarzani P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A. 1999;96:4662–4667. doi: 10.1073/pnas.96.8.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Bond C.T., Maylie J., Adelman J.P. SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol. 2005;15:305–311. doi: 10.1016/j.conb.2005.05.001. [DOI] [PubMed] [Google Scholar]
  • [16].Strobaek D., Hougaard C., Johansen T.H., Sorensen U.S., Nielsen E.O., Nielsen K.S., et al. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol. 2006;70:1771–1782. doi: 10.1124/mol.106.027110. [DOI] [PubMed] [Google Scholar]
  • [17].Ji H., Shepard P.D. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience. 2006;140:623–633. doi: 10.1016/j.neuroscience.2006.02.020. [DOI] [PubMed] [Google Scholar]
  • [18].Pedarzani P., Mosbacher J., Rivard A., Cingolani L.A., Oliver D., Stocker M., et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem. 2001;276:9762–9769. doi: 10.1074/jbc.M010001200. [DOI] [PubMed] [Google Scholar]
  • [19].Ren Y., Barnwell L.F., Alexander J.C., Lubin F.D., Adelman J.P., Pfaffinger P.J., et al. Regulation of surface localization of the small conductance Ca2+-activated potassium channel, Sk2, through direct phosphorylation by cAMP-dependent protein kinase. J Biol Chem. 2006;281:11769–11779. doi: 10.1074/jbc.M513125200. [DOI] [PubMed] [Google Scholar]
  • [20].Faber E.S., Delaney A.J., Sah P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat Neurosci. 2005;8:635–641. doi: 10.1038/nn1450. [DOI] [PubMed] [Google Scholar]
  • [21].Ngo-Anh T.J., Bloodgood B.L., Lin M., Sabatini B.L., Maylie J., Adelman J.P. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci. 2005;8:642–649. doi: 10.1038/nn1449. [DOI] [PubMed] [Google Scholar]
  • [22].Lovejoy L.P., Shepard P.D., Canavier C.C. Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic. Neuroscience. 2001;104:829–840. doi: 10.1016/S0306-4522(01)00121-X. [DOI] [PubMed] [Google Scholar]
  • [23].Wang Y., Yang P.L., Tang J.F., Lin J.F., Cai X.H., Wang X.T., et al. Potassium channels: possible new therapeutic targets in Parkinson’s disease. Med Hypotheses. 2008;71:546–550. doi: 10.1016/j.mehy.2008.05.021. [DOI] [PubMed] [Google Scholar]
  • [24].Wolfart J., Roeper J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci. 2002;22:3404–3413. doi: 10.1523/JNEUROSCI.22-09-03404.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Ji H., Hougaard C., Herrik K.F., Strobaek D., Christophersen P., Shepard P.D. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci. 2009;29:1883–1895. doi: 10.1111/j.1460-9568.2009.06735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Foehring R.C., Zhang X.F., Lee J.C., Callaway J.C. Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol. 2009;102:2326–2333. doi: 10.1152/jn.00038.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Wolfart J., Neuhoff H., Franz O., Roeper J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci. 2001;21:3443–3456. doi: 10.1523/JNEUROSCI.21-10-03443.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Aumann T.D., Gantois I., Egan K., Vais A., Tomas D., Drago J., et al. SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Exp Neurol. 2008;213:419–430. doi: 10.1016/j.expneurol.2008.07.005. [DOI] [PubMed] [Google Scholar]
  • [29].Waroux O., Massotte L., Alleva L., Graulich A., Thomas E., Liegeois J.F., et al. SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci. 2005;22:3111–3121. doi: 10.1111/j.1460-9568.2005.04484.x. [DOI] [PubMed] [Google Scholar]
  • [30].Jana S., Maiti A.K., Bagh M.B., Banerjee K., Das A., Roy A., et al. Dopamine but not 3,4-dihydroxy phenylacetic acid (DOPAC) inhibits brain respiratory chain activity by autoxidation and mitochondria catalyzed oxidation to quinone products: implica tions in Parkinson’s disease. Brain Res. 2007;1139:195–200. doi: 10.1016/j.brainres.2006.09.100. [DOI] [PubMed] [Google Scholar]
  • [31].Gluck M., Ehrhart J., Jayatilleke E., Zeevalk G.D. Inhibition of brain mitochondrial respiration by dopamine: involvement of H2O2 and hydroxyl radicals but not glutathione-protein-mixed disulfides. J Neurochem. 2002;82:66–74. doi: 10.1046/j.1471-4159.2002.00938.x. [DOI] [PubMed] [Google Scholar]
  • [32].Sang T.K., Chang H.Y., Lawless G.M., Ratnaparkhi A., Mee L., Ackerson L.C., et al. A Drosophila model of mutant human parkininduced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci. 2007;27:981–992. doi: 10.1523/JNEUROSCI.4810-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Zhao M., Momma S., Delfani K., Carlen M., Cassidy R.M., Johansson C.B., et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–7930. doi: 10.1073/pnas.1131955100. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES