Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Aug 5;27(4):269. doi: 10.1007/s12264-011-1529-z

Angiotensin II-derived reactive oxygen species underpinning the processing of the cardiovascular reflexes in the medulla oblongata

血管紧张素II 诱导产生的活性氧簇参与延髓的心血管反射

Valdir A Braga 1,, Eduardo Colombari 2, Mariana G Jovita 1
PMCID: PMC5560308  PMID: 21788998

Abstract

The brainstem is a major site in the central nervous system involved in the processing of the cardiovascular reflexes such as the baroreflex and the peripheral chemoreflex. The nucleus tractus solitarius and the rostral ventrolateral medulla are 2 important brainstem nuclei, and they play pivotal roles in autonomic cardiovascular regulation. Angiotensin II is one of the neurotransmitters involved in the processing of the cardiovascular reflexes within the brainstem. It is well-known that one of the mechanisms by which angiotensin II exerts its effect is via the activation of pathways that generate reactive oxygen species (ROS). In the central nervous system, ROS are reported to be involved in several pathological diseases such as hypertension, heart failure and sleep apnea. However, little is known about the role of ROS in the processing of the cardiovascular reflexes within the brainstem. The present review mainly discussed some recent findings documenting a role for ROS in the processing of the baroreflex and the peripheral chemoreflex in the brainstem.

Keywords: angiotensin II, superoxide, rostral ventrolateral medulla, nucleus tractus solitarius, baroreflex, peripheral chemoreflex

References

  • [1].Guyenet P.G. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–346. doi: 10.1038/nrn1902. [DOI] [PubMed] [Google Scholar]
  • [2].Braga V.A., Paton J.F., Machado B.H. Ischaemia-induced sympathoexcitation in spinalyzed rats. Neurosci Lett. 2007;415(1):73–76. doi: 10.1016/j.neulet.2006.12.045. [DOI] [PubMed] [Google Scholar]
  • [3].Braga V.A., Soriano R.N., Braccialli A.L., de Paula P.M., Bonagamba L.G., Paton J.F., et al. Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol. 2007;581(3):1129–1145. doi: 10.1113/jphysiol.2007.129031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Potts J.T., Paton J.F., Mitchell J.H., Garry M.G., Kline G., Anguelov P.T., et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience. 2003;119:201–214. doi: 10.1016/S0306-4522(02)00953-3. [DOI] [PubMed] [Google Scholar]
  • [5].Franchini K.G., Krieger E.M. Cardiovascular responses of conscious rats to carotid body chemoreceptor stimulation by intravenous KCN. J Auton Nerv Syst. 1993;42:63–70. doi: 10.1016/0165-1838(93)90342-R. [DOI] [PubMed] [Google Scholar]
  • [6].Braga V.A., Soriano R.N., Machado B.H. Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia. Exp Physiol. 2006;91(6):1025–1031. doi: 10.1113/expphysiol.2006.034868. [DOI] [PubMed] [Google Scholar]
  • [7].Braga V.A., Burmeister M.A., Sharma R.V., Davisson R.L. Cardiovascular responses to peripheral chemoreflex activation and comparison of different methods to evaluate baroreflex gain in conscious mice using telemetry. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1168–R1174. doi: 10.1152/ajpregu.90375.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Antunes V.R., Braga V.A., Machado B.H. Autonomic and respiratory responses to microinjection of ATP into the intermediate or caudal nucleus tractus solitarius in the working heart-brainstem preparation of the rat. Clin Exp Pharmacol Physiol. 2005;32(5–6):467–472. doi: 10.1111/j.1440-1681.2005.04213.x. [DOI] [PubMed] [Google Scholar]
  • [9].Braga V.A., Machado B.H. Chemoreflex sympathoexcitation was not altered by the antagonism of glutamate receptors in the commissural nucleus tractus solitarii in the working heart-brainstem preparation of rats. Exp Physiol. 2006;91(3):551–559. doi: 10.1113/expphysiol.2005.033100. [DOI] [PubMed] [Google Scholar]
  • [10].Machado B.H. Neurotransmission of the cardiovascular reflexes in the nucleus tractus solitarii of awake rats. Ann N Y Acad Sci. 2001;940:179–196. doi: 10.1111/j.1749-6632.2001.tb03676.x. [DOI] [PubMed] [Google Scholar]
  • [11].Braga V.A., Antunes V.R., Machado B.H. Autonomic and respiratory responses to microinjection of L-glutamate into the commissural subnucleus of the NTS in the working heart-brainstem preparation of the rat. Brain Res. 2006;1093(1):150–160. doi: 10.1016/j.brainres.2006.03.105. [DOI] [PubMed] [Google Scholar]
  • [12].Zubcevic J., Potts J.T. Role of GABAergic neurones in the nucleus tractus solitarii in modulation of cardiovascular activity. Exp Physiol. 2010;95(9):909–918. doi: 10.1113/expphysiol.2010.054007. [DOI] [PubMed] [Google Scholar]
  • [13].Lin L.H., Taktakishvili O.M., Talman W.T. Colocalization of neurokinin-1, N-methyl-D-aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii. Neuroscience. 2008;154(2):690–700. doi: 10.1016/j.neuroscience.2008.03.078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Wang W.Z., Gao L., Pan Y.X., Zucker I.H., Wang W. AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1137–R1145. doi: 10.1152/ajpregu.00590.2006. [DOI] [PubMed] [Google Scholar]
  • [15].Waki H., Kasparov S., Wong L.F., Murphy D., Shimizu T., Paton J.F. Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol. 2003;546(1):233–242. doi: 10.1113/jphysiol.2002.030270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Scislo T.J., Ergene E., O’Leary D.S. Impaired arterial baroreflex regulation of heart rate after blockade of P2-purinoceptors in the nucleus tractus solitarius. Brain Res Bull. 1998;47(1):63–67. doi: 10.1016/S0361-9230(98)00066-5. [DOI] [PubMed] [Google Scholar]
  • [17].Mayorov D.N., Head G.A. Glutamate receptors in RVLM modulate sympathetic baroreflex in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R511–R519. doi: 10.1152/ajpregu.00351.2002. [DOI] [PubMed] [Google Scholar]
  • [18].Alzamora A.C., Santos R.A., Campagnole-Santos M.J. Baroreflex modulation by angiotensins at the rat rostral and caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R1027–R1034. doi: 10.1152/ajpregu.00852.2004. [DOI] [PubMed] [Google Scholar]
  • [19].Wang Y., Patel K.P., Cornish K.G., Channon K.M., Zucker I.H. nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2003;285(4):H1660–H1667. doi: 10.1152/ajpheart.00239.2003. [DOI] [PubMed] [Google Scholar]
  • [20].Paton J.F., Deuchars J., Ahmad Z., Wong L.F., Murphy D., Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001;531(2):445–458. doi: 10.1111/j.1469-7793.2001.0445i.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Moraes DJ, Bonagamba LG, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 2011 (in press). [DOI] [PubMed]
  • [22].Nunes F.C., Ribeiro T.P., França-Silva M.S., Medeiros I.A., Braga V.A. Superoxide scavenging in the rostral ventrolateral medulla blunts the pressor response to peripheral chemoreflex activation. Brain Res. 2010;1351:141–149. doi: 10.1016/j.brainres.2010.07.001. [DOI] [PubMed] [Google Scholar]
  • [23].Makeham J.M., Goodchild A.K., Pilowsky P.M. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am J Physiol Regul Integr Comp Physiol. 2005;288(6):R1707–R1715. doi: 10.1152/ajpregu.00537.2004. [DOI] [PubMed] [Google Scholar]
  • [24].Harrison D.G., Dikalov S. Oxidative events in cell and vascular biology. In: Re R.N., DiPette D.J., Schriffrin E.L., Sowers J.R., editors. Molecular mechanisms in hypertension. 1st ed. Abingdon (UK): Taylor & Francis Medical Books; 2006. pp. 297–320. [Google Scholar]
  • [25].Griendling K.K., Minieri C.A., Ollerenshaw J.D., Alexander R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–1148. doi: 10.1161/01.res.74.6.1141. [DOI] [PubMed] [Google Scholar]
  • [26].Zimmerman M.C., Lazartigues E., Lang J.A., Sinnayah P., Ahmad I.M., Spitz D.R., et al. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 2002;91(11):1038–1045. doi: 10.1161/01.RES.0000043501.47934.FA. [DOI] [PubMed] [Google Scholar]
  • [27].Zimmerman M.C., Davisson R.L. Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol. 2004;84(2–3):125–149. doi: 10.1016/j.pbiomolbio.2003.11.009. [DOI] [PubMed] [Google Scholar]
  • [28].Braga V.A. Dietary salt enhances angiotensin-II-induced superoxide formation in the rostral ventrolateral medulla. Auton Neurosci. 2010;155(1–2):14–18. doi: 10.1016/j.autneu.2009.12.007. [DOI] [PubMed] [Google Scholar]
  • [29].Zimmerman M.C., Lazartigues E., Sharma R.V., Davisson R.L. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95(2):210–216. doi: 10.1161/01.RES.0000135483.12297.e4. [DOI] [PubMed] [Google Scholar]
  • [30].Peterson J.R., Burmeister M.A., Tian X., Zhou Y., Guruju M.R., Stupinski J.A., et al. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension. 2009;54(5):1106–1114. doi: 10.1161/HYPERTENSIONAHA.109.140087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Allen A.M., Chai S.Y., Sexton P.M., Lewis S.J., Verberne A.J., Jarrott B., et al. Angiotensin II receptors and angiotensin converting enzyme in the medulla oblongata. Hypertension. 1987;9:198–205. doi: 10.1161/01.hyp.9.6_pt_2.iii198. [DOI] [PubMed] [Google Scholar]
  • [32].Nunes FC, Braga VA. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J Renin Angiotensin Aldosterone Syst 2011. Doi: 10.1177/1470320310394891. [DOI] [PubMed]
  • [33].Braga VA. Differential brain angiotensin-II type I receptor expression in hypertensive rats. J Vet Sci 2011 (in press). [DOI] [PMC free article] [PubMed]
  • [34].Li Y.W., Guyenet P.G. Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ Res. 1996;78:274–282. doi: 10.1161/01.res.78.2.274. [DOI] [PubMed] [Google Scholar]
  • [35].Andreatta S.H., Averill D.B., Santos R.A., Ferrario C.M. The ventrollateral medulla. A new site of action of the renin-angiotensin system. Hypertension. 1988;11:163–166. doi: 10.1161/01.hyp.11.2_pt_2.i163. [DOI] [PubMed] [Google Scholar]
  • [36].Hirooka Y., Potts P.D., Dampney R.A. Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla of the rabbit. Brain Res. 1997;772:107–114. doi: 10.1016/S0006-8993(97)00861-5. [DOI] [PubMed] [Google Scholar]
  • [37].Gao L., Wang W., Li Y.L., Schultz H.D., Liu D., Cornish K.G., et al. Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol. 2005;288(5):H2271–H2279. doi: 10.1152/ajpheart.00949.2004. [DOI] [PubMed] [Google Scholar]
  • [38].Kishi T., Hirooka Y., Konno S., Ogawa K., Sunagawa K. Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in strokeprone spontaneously hypertensive rats. Hypertension. 2010;55(2):291–297. doi: 10.1161/HYPERTENSIONAHA.109.138636. [DOI] [PubMed] [Google Scholar]
  • [39].Botelho-Ono M.S., Pina H.V., Sousa K.H., Nunes F.C., Medeiros I.A., Braga V.A. Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Auton Neurosci. 2011;159(1–2):38–44. doi: 10.1016/j.autneu.2010.07.025. [DOI] [PubMed] [Google Scholar]
  • [40].Giusti M.F., Sato M.A., Cardoso L.M., Braga V.A., Colombari E. Central antioxidant therapy inhibits parasympathetic baroreflex control in conscious rats. Neurosci Lett. 2011;489(2):115–118. doi: 10.1016/j.neulet.2010.11.077. [DOI] [PubMed] [Google Scholar]
  • [41].Nishi E.E., Oliveira-Sales E.B., Bergamaschi C.T., Oliveira T.G., Boim M.A., Campos R.R. Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. Am J Hypertens. 2010;23(5):473–480. doi: 10.1038/ajh.2010.11. [DOI] [PubMed] [Google Scholar]
  • [42].Guimaraes DD, Oliveira-Monteiro NM, Braga VA. Acute superoxide scavenging restores depressed baroreflex sensitivity in spontaneously hypertensive rats. Auton Neurosci 2011 (in press). [DOI] [PubMed]
  • [43].Harrison D.G., Gongora M.C. Oxidative stress and hypertension. Med Clin North Am. 2009;93(3):621–635. doi: 10.1016/j.mcna.2009.02.015. [DOI] [PubMed] [Google Scholar]
  • [44].Braga VA, Medeiros IA, Ribeiro TP, Franca-Silva MS, Botelho-Ono MS, Guimaraes DD. Angiotensin-II-derived reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. Braz J Med Biol Res 2011 (in press). [DOI] [PubMed]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES