Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Sep 29;27(5):319. doi: 10.1007/s12264-011-1032-6

Forced swimming stress does not affect monoamine levels and neurodegeneration in rats

强迫性游泳压力对大鼠单胺水平和神经退行性变化没有影响

Ghulam Abbas 1, Sabira Naqvi 1, Shahab Mehmood 2, Nurul Kabir 2, Ahsana Dar 1,2,
PMCID: PMC5560311  PMID: 21934727

Abstract

Objective

The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration).

Methods

Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C.

Results

The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 ± 5), (220 ± 4) and (231 ± 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment.

Conclusion

The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

Keywords: forced swimming test, immobility time, noradrenalin, serotonin, dopamine, adrenalin, neurodegeneration

References

  • [1].McKinney W.T., Bunney W.E. Animal models of depression: review of the evidence and implications for research. Arch Gen Psychiatry. 1969;21:240–248. doi: 10.1001/archpsyc.1969.01740200112015. [DOI] [PubMed] [Google Scholar]
  • [2].Castagne V., Porsolt R.D., Moser P. Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in mouse. Eur J Pharmacol. 2009;616:128–133. doi: 10.1016/j.ejphar.2009.06.018. [DOI] [PubMed] [Google Scholar]
  • [3].Porsolt R.D., Pichon M.L., Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–732. doi: 10.1038/266730a0. [DOI] [PubMed] [Google Scholar]
  • [4].Cryan J.F., Markou A., Lucki I. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol Sci. 2002;23:238–245. doi: 10.1016/S0165-6147(02)02017-5. [DOI] [PubMed] [Google Scholar]
  • [5].Elhwuegi A.S. Central monoamines and their role in major depression. Progr Neuro Psychopharmacol Biol Psychiatr. 2004;28:435–451. doi: 10.1016/j.pnpbp.2003.11.018. [DOI] [PubMed] [Google Scholar]
  • [6].Bergquist J., Sciubisz A., Kaczor A., Silberring J. Catecholamines and methods for their identification and quantitation in biological tissues and fluids. J Neurosci Methods. 2002;113:1–13. doi: 10.1016/S0165-0270(01)00502-7. [DOI] [PubMed] [Google Scholar]
  • [7].Berton O., Nestler E.J. New approaches to antidepressants drug discovery: beyond monoamines. Nat Neurosci. 2006;7:137–151. doi: 10.1038/nrn1846. [DOI] [PubMed] [Google Scholar]
  • [8].McEwen B.S. Effect of adverse experiences for brain structure and function. Biol Psychiatry. 2000;48:721–731. doi: 10.1016/S0006-3223(00)00964-1. [DOI] [PubMed] [Google Scholar]
  • [9].Dranovsky A., Hen R. Hippocampal neurogenesis: Regulation by stress and antidepressants. Biol Psychiatry. 2006;59:1136–1143. doi: 10.1016/j.biopsych.2006.03.082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Sudo A. Accumulation of adrenaline in sympathetic nerve endings in various organs of rat exposed to swimming stress. Jpn J Pharmacol. 1985;38:367–374. doi: 10.1254/jjp.38.367. [DOI] [PubMed] [Google Scholar]
  • [11].Magarinos A.M., McEwen B.S., Flugge G., Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16:3534–3540. doi: 10.1523/JNEUROSCI.16-10-03534.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Mizoguchi K., Yuzurihara M., Ishige A., Sasaki H., Chui D.H., Tabira T. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology. 2001;26:443–459. doi: 10.1016/S0306-4530(01)00004-X. [DOI] [PubMed] [Google Scholar]
  • [13].Taupin P. Neurogenesis in the adult central nervous system. C R Biol. 2006;329:465–475. doi: 10.1016/j.crvi.2006.04.001. [DOI] [PubMed] [Google Scholar]
  • [14].Schmued L.C., Albertson C., Slikker W. Fluoro-Jade C: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997;751:37–46. doi: 10.1016/S0006-8993(96)01387-X. [DOI] [PubMed] [Google Scholar]
  • [15].Ehara A., Ueda S. Application of Fluoro-Jade C in acute and chronic neurodegeneration models: utilities and staining difference. Acta Histochem Cytochem. 2009;42:171–179. doi: 10.1267/ahc.09018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Cheng F.C., Kuo J.S., Chia L.G., Tsai T.H., Chen C.F. Rapid measurement of the monoamine content in small volumes of rat plasma. J Chromatogr B. 1994;654:177–183. doi: 10.1016/0378-4347(94)00002-6. [DOI] [PubMed] [Google Scholar]
  • [17].Cheng F.C., Yang L.L., Lin S.K., Juang D.J., Chang W.H., Kuo J.S. Determination of human plasma biogenic amines and their metabolites using liquid chromatography with a dual-channel electrochemical detector. Chin Med J. 1995;55:15–24. [PubMed] [Google Scholar]
  • [18].Connor T.J., Kelliher P., Shen Y., Harken A., Kelly J.P., Leonard B.E. Effect of subchronic antidepressant treatments on behavioral, neurochemical and endocrine changes in the forced-swim test. Pharmacol Biochem Behav. 2000;65:591–597. doi: 10.1016/S0091-3057(99)00192-6. [DOI] [PubMed] [Google Scholar]
  • [19].Dar A., Khatoon S. Antidepressant effects of ethanol extract of Areca catechu in rodents. Phytother Res. 1997;11:174–176. doi: 10.1002/(SICI)1099-1573(199703)11:2<174::AID-PTR65>3.0.CO;2-B. [DOI] [Google Scholar]
  • [20].Adell A., Marquez C.G., Armario A., Gelpi E. Chronic stress increase serotonin and noradrenaline in rat brain and sensitizes their responses to a further acute stress. J Neurochem. 1988;50:1678–1681. doi: 10.1111/j.1471-4159.1988.tb02462.x. [DOI] [PubMed] [Google Scholar]
  • [21].Miura H., Naoi M., Nakahara D., Ohta T., Nagatsu T. Changes in monoamine levels in mouse brain elicited by forced-swimming stress, and the protective effect of a new monoamine oxidase inhibitor, RS-8359. J Neural Transm. 1993;94:175–187. doi: 10.1007/BF01277023. [DOI] [PubMed] [Google Scholar]
  • [22].Gamaro G.D., Manoli L.P., Torres I.L.S., Silveira R., Dalmaz C. Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int. 2003;42:104–114. doi: 10.1016/S0197-0186(02)00080-3. [DOI] [PubMed] [Google Scholar]
  • [23].An L., Zhang Y.Z., Yu N.J., Liu X.M., Zhao N., Yuan L., et al. Role of serotonin in the antidepressant-like effect of flavonoid extract of Xiaobuxin-Tang. Pharmacol Biochem Behav. 2008;89:572–580. doi: 10.1016/j.pbb.2008.02.014. [DOI] [PubMed] [Google Scholar]
  • [24].Rasheed N., Tyagi E., Ahmad A., Siripurapu K.B., Lahiri S., Shukla R., et al. Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium. J Ethnopharmacol. 2008;117:257–262. doi: 10.1016/j.jep.2008.01.035. [DOI] [PubMed] [Google Scholar]
  • [25].Kirby L.G., Allen A.R., Lucki I. Regional differences in the effects of forced swimming on the extracellular levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid. Brain Res. 1995;682:189–196. doi: 10.1016/0006-8993(95)00349-U. [DOI] [PubMed] [Google Scholar]
  • [26].Yi L.T., Li Y.C., Pan Y., Li J.M., Xu Q., Mo S.F., et al. Antidepressantlike effects of psoralidin isolated from the seeds of Psoralea corylifolia in the forced swimming test in mice. Progr Neuro Psychopharmacol Biol Psychiatr. 2008;32:510–519. doi: 10.1016/j.pnpbp.2007.10.005. [DOI] [PubMed] [Google Scholar]
  • [27].Yang C.H., Lee B.B., Jung H.S., Shim I., Roh P.U., Golden G.T. Effect of electroacupuncture on response to immobilization stress. Pharmacol Biochem Behav. 2002;72:847–855. doi: 10.1016/S0091-3057(02)00769-4. [DOI] [PubMed] [Google Scholar]
  • [28].Sanchez A., Toledo-Pinto E.A., Menezes M.L., Pereira O.C.M. Changes in norepinephrine and epinephrine concentrations in adrenal glands of the rats submitted to acute immobilization stress. Pharmacol Res. 2003;48:607–613. doi: 10.1016/S1043-6618(03)00241-X. [DOI] [PubMed] [Google Scholar]
  • [29].Jarosik J., Legutko B., Unsicker K., Halbach O.B. Antidepressantmediated reversal of abnormal behavior and neurodegeneration in mice following olfactory bulbectomy. Exp Neurol. 2007;204:20–28. doi: 10.1016/j.expneurol.2006.09.008. [DOI] [PubMed] [Google Scholar]
  • [30].Panov A., Dikalov S., Shalbuyeva N., Taylor G., Sherer T. Rotenone model of Parkinson disease, multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem. 2005;280:42026–42035. doi: 10.1074/jbc.M508628200. [DOI] [PubMed] [Google Scholar]
  • [31].Albel E.L. Behavior and corticosteroid response of maudsley reactive and nonreactive rats in open field and forced swimming test. Physiol Behav. 1991;50:151–153. doi: 10.1016/0031-9384(91)90513-N. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES