Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Sep 29;27(5):307. doi: 10.1007/s12264-011-1046-0

Functional MRI mapping of category-specific sites associated with naming of famous faces, animals and man-made objects

名人面孔、 动物和人造物类别特异性命名区脑定位的功能磁共振研究

Hong-Min Bai 1,2, Tao Jiang 3, Wei-Min Wang 2, Tian-Dong Li 2, Yan Liu 2, Yi-Cheng Lu 1,
PMCID: PMC5560313  PMID: 21934726

Abstract

Objective

Category-specific recognition and naming deficits have been observed in a variety of patient populations. However, the category-specific cortices for naming famous faces, animals and man-made objects remain controversial. The present study aimed to study the specific areas involved in naming pictures of these 3 categories using functional magnetic resonance imaging.

Methods

Functional images were analyzed using statistical parametric mapping and the 3 different contrasts were evaluated using t statistics by comparing the naming tasks to their baselines. The contrast images were entered into a random-effects group level analysis. The results were reported in Montreal Neurological Institute coordinates, and anatomical regions were identified using an automated anatomical labeling method with XJview 8.

Results

Naming famous faces caused more activation in the bilateral head of the hippocampus and amygdala with significant left dominance. Bilateral activation of pars triangularis and pars opercularis in the naming of famous faces was also revealed. Naming animals evoked greater responses in the left supplementary motor area, while naming man-made objects evoked more in the left premotor area, left pars orbitalis and right supplementary motor area. The extent of bilateral fusiform gyri activation by naming man-made objects was much larger than that by naming of famous faces or animals. Even in the overlapping sites of activation, some differences among the categories were found for activation in the fusiform gyri.

Conclusion

The cortices involved in the naming process vary with the naming of famous faces, animals and man-made objects. This finding suggests that different categories of pictures should be used during intra-operative language mapping to generate a broader map of language function, in order to minimize the incidence of false-negative stimulation and permanent post-operative deficits.

Keywords: brain mapping, category-specific naming, famous face, animal, man-made object

References

  • [1].Sanai N., Mirzadeh Z., Berger M.S. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358(1):18–27. doi: 10.1056/NEJMoa067819. [DOI] [PubMed] [Google Scholar]
  • [2].Sanai N., Berger M.S. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009;6(3):478–486. doi: 10.1016/j.nurt.2009.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Sanai N., Berger M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753–764. doi: 10.1227/01.neu.0000318159.21731.cf. [DOI] [PubMed] [Google Scholar]
  • [4].McGirt M.J., Chaichana K.L., Attenello F.J., Weingart J.D., Than K., Burger P.C., et al. Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating lowg-rade gliomas. Neurosurgery. 2008;63(4):700–707. doi: 10.1227/01.NEU.0000325729.41085.73. [DOI] [PubMed] [Google Scholar]
  • [5].Berger M.S., Hadjipanayis C.G. Surgery of intrinsic cerebral tumors. Neurosurgery. 2007;61(1Suppl):279–304. doi: 10.1227/01.NEU.0000255489.88321.18. [DOI] [PubMed] [Google Scholar]
  • [6].Bertani G., Fava E., Casaceli G., Carrabba G., Casarotti A., Papagno C., et al. Intraoperative mapping and monitoring of brain functions for the resection of low-grade gliomas: technical considerations. Neurosurg Focus. 2009;27(4):E4. doi: 10.3171/2009.8.FOCUS09137. [DOI] [PubMed] [Google Scholar]
  • [7].Ilmberger J., Ruge M., Kreth F.W., Briegel J., Reulen H.J., Tonn J.C. Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis. J Neurosurg. 2008;109(4):583–592. doi: 10.3171/JNS/2008/109/10/0583. [DOI] [PubMed] [Google Scholar]
  • [8].Kim S.S., McCutcheon I.E., Suki D., Weinberg J.S., Sawaya R., Lang F.F., et al. Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery. 2009;64(5):836–845. doi: 10.1227/01.NEU.0000342405.80881.81. [DOI] [PubMed] [Google Scholar]
  • [9].Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46(4):927–934. doi: 10.1016/j.neuropsychologia.2007.10.025. [DOI] [PubMed] [Google Scholar]
  • [10].Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol. 2009;21(6):543–549.. doi: 10.1097/CCO.0b013e3283305996. [DOI] [PubMed] [Google Scholar]
  • 11].Duffau H., Peggy G.S.T., Mandonnet E., Capelle L., Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109(3):461–471. doi: 10.3171/JNS/2008/109/9/0461. [DOI] [PubMed] [Google Scholar]
  • [12].Duffau H. Awake surgery for nonlanguage mapping. Neurosurgery. 2010;66(3):523–529. doi: 10.1227/01.NEU.0000364996.97762.73. [DOI] [PubMed] [Google Scholar]
  • [13].Duffau H., Capelle L., Sichez N., Denvil D., Lopes M., Sichez J.P., et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125:199–214. doi: 10.1093/brain/awf016. [DOI] [PubMed] [Google Scholar]
  • [14].Mandonnet E., Winkler P.A., Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 2010;152(2):185–193. doi: 10.1007/s00701-009-0469-0. [DOI] [PubMed] [Google Scholar]
  • [15].Taylor M.D., Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90(1):35–41. doi: 10.3171/jns.1999.90.1.0035. [DOI] [PubMed] [Google Scholar]
  • [16].Ojemann G., Ojemann J., Lettich E., Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):316–326. doi: 10.3171/jns.1989.71.3.0316. [DOI] [PubMed] [Google Scholar]
  • [17].Chouinard P.A., Goodale M.A. Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia. 2009;48(2):409–418. doi: 10.1016/j.neuropsychologia.2009.09.032. [DOI] [PubMed] [Google Scholar]
  • [18].Lag T. Category-specific effects in object identification: what is “normal”. Cortex. 2005;41(6):833–841. doi: 10.1016/S0010-9452(08)70302-2. [DOI] [PubMed] [Google Scholar]
  • [19].Hillis A.E., Caramazza A. Category-specific naming and comprehension impairment: a double dissociation. Brain. 1991;114(Pt5):2081–2094. doi: 10.1093/brain/114.5.2081. [DOI] [PubMed] [Google Scholar]
  • [20].Tippett L.J., Glosser G., Farah M.J. A category-specific naming impairment after temporal lobectomy. Neuropsychologia. 1996;34(2):139–146. doi: 10.1016/0028-3932(95)00098-4. [DOI] [PubMed] [Google Scholar]
  • [21].Lu L.H., Crosson B., Nadeau S.E., Heilman K.M., Gonzalez-Rothi L.J., Raymer A., et al. Category-specific naming deficits for objects and actions: semantic attribute and grammatical role hypotheses. Neuropsychologia. 2002;40(9):1608–1621. doi: 10.1016/S0028-3932(02)00014-3. [DOI] [PubMed] [Google Scholar]
  • [22].Drane D.L., Ojemann G.A., Aylward E., Ojemann J.G., Johnson L.C., Silbergeld D.L., et al. Category-specific naming and recognition deficits in temporal lobe epilepsy surgical patients. Neuropsychologia. 2008;46(5):1242–1255. doi: 10.1016/j.neuropsychologia.2007.11.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Milders M. Naming famous faces and buildings. Cortex. 2000;36(1):138–145. doi: 10.1016/S0010-9452(08)70842-6. [DOI] [PubMed] [Google Scholar]
  • [24].Rizzo S., Venneri A., Papagno C. Famous face recognition and naming test: a normative study. Neurol Sci. 2002;23(4):153–159. doi: 10.1007/s100720200056. [DOI] [PubMed] [Google Scholar]
  • [25].Gainotti G., Barbier A., Marra C. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain. 2003;126(Pt4):792–803. doi: 10.1093/brain/awg092. [DOI] [PubMed] [Google Scholar]
  • [26].Griffith H.R., Richardson E., Pyzalski R.W., Bell B., Dow C., Hermann B.P., et al. Memory for famous faces and the temporal pole: functional imaging findings in temporal lobe epilepsy. Epilepsy Behav. 2006;9(1):173–180. doi: 10.1016/j.yebeh.2006.04.024. [DOI] [PubMed] [Google Scholar]
  • [27].Avidan G., Behrmann M. Functional MRI reveals compromised neural integrity of the face processing network in congenital prosopagnosia. Curr Biol. 2009;19(13):1146–1150. doi: 10.1016/j.cub.2009.04.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Seidenberg M., Griffith R., Sabsevitz D., Moran M., Haltiner A., Bell B., et al. Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy. Neuropsychologia. 2002;40(4):446–456. doi: 10.1016/S0028-3932(01)00096-3. [DOI] [PubMed] [Google Scholar]
  • [29].Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology. 2006;20(1):1–10. doi: 10.1037/0894-4105.20.1.1. [DOI] [PubMed] [Google Scholar]
  • [30].Giussani C., Roux F.E., Bello L., Lauwers-Cances V., Papagno C., Gaini S.M., et al. Who is who: areas of the brain associated with recognizing and naming famous faces. J Neurosurg. 2009;110(2):289–299. doi: 10.3171/2007.8.17566. [DOI] [PubMed] [Google Scholar]
  • [31].Ruff I.M., Petrovich B.N.M., Peck K.K., Hou B.L., Tabar V., Brennan C.W., et al. Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR Am J Neuroradiol. 2008;29(3):528–535. doi: 10.3174/ajnr.A0841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Joseph J.E. Functional neuroimaging studies of category specificity in object recognition: a critical review and meta-analysis. Cogn Affect Behav Neurosci. 2001;1(2):119–136. doi: 10.3758/CABN.1.2.119. [DOI] [PubMed] [Google Scholar]
  • [33].Lambert N.A., Swain M.A., Miller L.A., Caine D. Exploring the neural organization of person-related knowledge: lateralization of lesion, category specificity, and stimulus modality effects. Neuropsychology. 2006;20(3):346–354. doi: 10.1037/0894-4105.20.3.346. [DOI] [PubMed] [Google Scholar]
  • [34].Di R.E., Crow T.J., Walker M.A., Black G., Chance S.A. Reduced neuron density, enlarged minicolumn spacing and altered ageing effects in fusiform cortex in schizophrenia. Psychiatry Res. 2009;166(2-3):102–115. doi: 10.1016/j.psychres.2008.04.007. [DOI] [PubMed] [Google Scholar]
  • [35].Chao L.L., Haxby J.V., Martin A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat Neurosci. 1999;2(10):913–919. doi: 10.1038/13217. [DOI] [PubMed] [Google Scholar]
  • [36].Lehmann C., Mueller T., Federspiel A., Hubl D., Schroth G., Huber O., et al. Dissociation between overt and unconscious face processing in fusiform face area. Neuroimage. 2004;21(1):75–83. doi: 10.1016/j.neuroimage.2003.08.038. [DOI] [PubMed] [Google Scholar]
  • [37].Grill-Spector K., Knouf N., Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci. 2004;7(5):555–562. doi: 10.1038/nn1224. [DOI] [PubMed] [Google Scholar]
  • [38].Rhodes G., Byatt G., Michie P.T., Puce A. Is the fusiform face area specialized for faces, individuation, or expert individuation. J Cogn Neurosci. 2004;16(2):189–203. doi: 10.1162/089892904322984508. [DOI] [PubMed] [Google Scholar]
  • [39].Liljestrom M., Tarkiainen A., Parviainen T., Kujala J., Numminen J., Hiltunen J., et al. Perceiving and naming actions and objects. Neuroimage. 2008;41(3):1132–1141. doi: 10.1016/j.neuroimage.2008.03.016. [DOI] [PubMed] [Google Scholar]
  • [40].Lambert N.A., Swain M.A., Miller L.A., Caine D. Exploring the neural organization of person-related knowledge: lateralization of lesion, category specificity, and stimulus modality effects. Neuropsychology. 2006;20(3):346–354. doi: 10.1037/0894-4105.20.3.346. [DOI] [PubMed] [Google Scholar]
  • [41].Okada T., Tanaka S., Nakai T., Nishizawa S., Inui T., Sadato N., et al. Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neurosci Lett. 2000;296(1):33–36. doi: 10.1016/S0304-3940(00)01612-8. [DOI] [PubMed] [Google Scholar]
  • [42].Glosser G., Salvucci A.E., Chiaravalloti N.D. Naming and recognizing famous faces in temporal lobe epilepsy. Neurology. 2003;61(1):81–86. doi: 10.1212/01.wnl.0000073621.18013.e1. [DOI] [PubMed] [Google Scholar]
  • [43].Sergent J., Ohta S., MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain. 1992;115:15–36. doi: 10.1093/brain/115.1.15. [DOI] [PubMed] [Google Scholar]
  • [44].Kanwisher N., McDermott J., Chun M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17(11):4302–4311. doi: 10.1523/JNEUROSCI.17-11-04302.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Puce A., Allison T., Gore J.C., McCarthy G. Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol. 1995;74(3):1192–1199. doi: 10.1152/jn.1995.74.3.1192. [DOI] [PubMed] [Google Scholar]
  • [46].Kreifelts B., Ethofer T., Shiozawa T., Grodd W., Wildgruber D. Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus. Neuropsychologia. 2009;47(14):3059–3066. doi: 10.1016/j.neuropsychologia.2009.07.001. [DOI] [PubMed] [Google Scholar]
  • [47].Leube D.T., Yoon H.W., Rapp A., Erb M., Grodd W., Bartels M., et al. Brain regions sensitive to the face inversion effect: a functional magnetic resonance imaging study in humans. Neurosci Lett. 2003;342(3):143–146. doi: 10.1016/S0304-3940(03)00232-5. [DOI] [PubMed] [Google Scholar]
  • [48].Glosser G., Salvucci A.E., Chiaravalloti N.D. Naming and recognizing famous faces in temporal lobe epilepsy. Neurology. 2003;61(1):81–86. doi: 10.1212/01.wnl.0000073621.18013.e1. [DOI] [PubMed] [Google Scholar]
  • [49].Grabowski T.J., Damasio H., Damasio A.R. Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage. 1998;7(3):232–243. doi: 10.1006/nimg.1998.0324. [DOI] [PubMed] [Google Scholar]
  • [50].Joubert S., Felician O., Barbeau E., Ranjeva J.P., Christophe M., Didic M., et al. The right temporal lobe variant of frontotemporal dementia: cognitive and neuroanatomical profile of three patients. J Neurol. 2006;253(11):1447–1458. doi: 10.1007/s00415-006-0232-x. [DOI] [PubMed] [Google Scholar]
  • [51].Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology. 2006;20(1):1–10. doi: 10.1037/0894-4105.20.1.1. [DOI] [PubMed] [Google Scholar]
  • [52].Damasio H., Grabowski T.J., Tranel D., Hichwa R.D., Damasio A.R. A neural basis for lexical retrieval. Nature. 1996;380(6574):499–505. doi: 10.1038/380499a0. [DOI] [PubMed] [Google Scholar]
  • [53].Caramazza A., Shelton J.R. Domain-specific knowledge systems in the brain the animate-inanimate distinction. J Cogn Neurosci. 1998;10(1):1–34. doi: 10.1162/089892998563752. [DOI] [PubMed] [Google Scholar]
  • [54].Petrides M., Pandya D.N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci. 1999;11(3):1011–1036. doi: 10.1046/j.1460-9568.1999.00518.x. [DOI] [PubMed] [Google Scholar]
  • [55].Petrides M., Pandya D.N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16(2):291–310. doi: 10.1046/j.1460-9568.2001.02090.x. [DOI] [PubMed] [Google Scholar]
  • [56].Finkbeiner M., Slotnick S.D., Moo L.R., Caramazza A. Involuntary capture of attention produces domain-specific activation. Neuroreport. 2007;18(10):975–979. doi: 10.1097/WNR.0b013e3281668bcc. [DOI] [PubMed] [Google Scholar]
  • [57].Garn C.L., Allen M.D., Larsen J.D. An fMRI study of sex differences in brain activation during object naming. Cortex. 2009;45(5):610–618. doi: 10.1016/j.cortex.2008.02.004. [DOI] [PubMed] [Google Scholar]
  • [58].Chouinard P.A., Large M.E., Chang E.C., Goodale M.A. Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI动物;人造物investigation of the size-weight illusion. Neuroimage. 2009;44(1):200–212. doi: 10.1016/j.neuroimage.2008.08.023. [DOI] [PubMed] [Google Scholar]
  • [59].Rizzolatti G., Arbib M.A. Language within our grasp. Trends Neurosci. 1998;21(5):188–194. doi: 10.1016/S0166-2236(98)01260-0. [DOI] [PubMed] [Google Scholar]
  • [60].Arbib M.A. From grasp to language: embodied concepts and the challenge of abstraction. J Physiol Paris. 2008;102(1–3):4–20. doi: 10.1016/j.jphysparis.2008.03.001. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES