Abstract
Food intake can influence neuronal functions through different modulators expressed in the brain. The present review is a report through relevant experimental findings on the effects of choline, a nutritional component found in the diet, to identify a safe and effective dietary solution that can offer some protection against neurotoxicity and neurological disorders and that can be implemented in animals and humans in a very short period of time.
Keywords: choline, neurotoxicity, neuroprotection
摘要
k]日常摄取的食物能通过各种脑内表达的调节因子来影响神经功能。 胆碱是常存在于食物中的一种具有多种功能的营养成分。 本文对关于胆碱功能的相关实验结果进行综述, 以制定一个安全有效并能在较短的时间内得以实施的饮食方案来对抗神经毒性和神经系统疾病。
关键词: 胆碱, 神经毒性, 神经保护
References
- [1].Guo-Ross S.X., Clark S., Montoya D.A.C., Jones K.H., Obernier J., Shetty A.K., et al. prenatal choline supplementation protects against postnatal neurotoxicity. j neurosci. 2002;21(195):1–6. doi: 10.1523/JNEUROSCI.22-01-j0005.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Guo-Ross S.X., Jones K.H., Shetty A.K., Wilson W.A., Swartzwelder H.S. Prenatal dietary choline availability alters postnatal neurotoxic vulnerability in the adult rat. Neurosci Lett. 2003;341:161–163. doi: 10.1016/S0304-3940(03)00119-8. [DOI] [PubMed] [Google Scholar]
- [3].Wong-Goodrich S.J., Mellott T.J., Glenn M.J., Blusztajn J.K., Williams C.L. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus. Neurobiol Dis. 2008;30:255–269. doi: 10.1016/j.nbd.2008.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Wong-Goodrich S.J., Glenn M.J., Mellott T.J., Liu Y.B., Blusztajn J.K., Williams C.L. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood. Hippocampus. 2011;21(6):584–608. doi: 10.1002/hipo.20783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Thomas J.D., La Fiette M.H., Quinn V.R., Riley E.P. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol. 2000;22:703–711. doi: 10.1016/S0892-0362(00)00097-0. [DOI] [PubMed] [Google Scholar]
- [6].Thomas J.D., Garrison M., O’Neill T.M. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol. 2004;26:35–45. doi: 10.1016/j.ntt.2003.10.002. [DOI] [PubMed] [Google Scholar]
- [7].Thomas J.D., Biane J.S., O’Bryan K.A., O’Neill T.M., Dominguez H.D. Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci. 2007;121:120–130. doi: 10.1037/0735-7044.121.1.120. [DOI] [PubMed] [Google Scholar]
- [8].Ryan S.H., Williams J.K., Thomas J.D. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: Effects of varying the timing of choline administration. Brain Res. 2008;1237:91–100. doi: 10.1016/j.brainres.2008.08.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Thomas J.D., Abou J.E., Dominguez H.D. Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol. 2009;31:303–311. doi: 10.1016/j.ntt.2009.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Moon J., Chen M., Gandhy S.U., Strawderman M., Levitsky D.A., Maclean K.N., et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav Neurosci. 2010;124(3):346–361. doi: 10.1037/a0019590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Guseva M.V., Hopkins D.M., Scheff S.W., Pauly J.R. Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. Neurotrauma. 2008;25(8):975–983. doi: 10.1089/neu.2008.0516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Meck W.H., Williams C.L. Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci Biobehav Rev. 2003;27:385–399. doi: 10.1016/S0149-7634(03)00069-1. [DOI] [PubMed] [Google Scholar]
- [13].Pomytkin N.A., Storozheva Z.I., Semenova N.A., Proshin A.T., Sherstnev V.V., Varfolomeev S.D., et al. Neuroprotective effect of choline succinate in rats with experimental chronic cerebral ischemia evaluated by cognitive ability tests. Izv Akad Nauk Ser Biol. 2007;2:183–187. [PubMed] [Google Scholar]
- [14].Zeisel S.H., Niculescu M.D. Perinatal choline influences brain structure and function. Nutr Rev. 2006;64(4):197–203. doi: 10.1111/j.1753-4887.2006.tb00202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Zeisel S.H. Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr. 2011;141(3):531–534. doi: 10.3945/jn.110.130369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Mehedint M.G., Craciunescu C.N., Zeisel S.H. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A. 2010;107(29):12834–12839. doi: 10.1073/pnas.0914328107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Niculescu M.D., Craciunescu C.N., Zeisel S.H. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20(1):43–49. doi: 10.1096/fj.05-4707com. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Tomassoni D., Avola R., Mignini F., Parnetti L., Amenta F. Effect of treatment with choline alphoscerate on hippocampus microanatomy and glial reaction in spontaneously hypertensive rats. Brain Res. 2006;1120(1):183–190. doi: 10.1016/j.brainres.2006.08.068. [DOI] [PubMed] [Google Scholar]
- [19].Zeisel S.H., da Costa K.A. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–623. doi: 10.1111/j.1753-4887.2009.00246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Zeisel S.H. Choline: an essential nutrient for humans. Nutrition. 2000;16:669–671. doi: 10.1016/S0899-9007(00)00349-X. [DOI] [PubMed] [Google Scholar]
- [21].Zeisel S.H. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229–250. doi: 10.1146/annurev.nutr.26.061505.111156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Buchman A.L. The addition of choline to parenteral nutrition. Gastroenetrology. 2009;137(5Suppl):S119–128. doi: 10.1053/j.gastro.2009.08.010. [DOI] [PubMed] [Google Scholar]
- [23].Zeisel S.H., Mar M.H., Howe J.C., Holden J.M. Concentrations of choline-containing compounds and betaine in common foods. J Nutr. 2003;133(5):1302–1307. doi: 10.1093/jn/133.5.1302. [DOI] [PubMed] [Google Scholar]
- [24].A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients, Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B-6, Vitamin B-12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press, 1998: 390–422.
- [25].Fischer L., da Costa K., Kwock L., Stewart P., Lu T., Stabler S., et al. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007;85(5):1275–1285. doi: 10.1093/ajcn/85.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Xu X., Gammon M.D., Zeisel S.H., Lee Y.L., Wetmur J.G., Teitelbaum S.L., et al. Choline metabolism and risk of breast cancer in a population-based study. FASEB J. 2008;22(6):2045–2052. doi: 10.1096/fj.07-101279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Lee J.E., Giovannucci E., Fuchs C.S., Willett W.C., Zeisel S.H., Cho E. Choline and betaine intake and the risk of colorectal cancer in men. Cancer Epidemiol Biomarkers Prev. 2010;19(3):884–887. doi: 10.1158/1055-9965.EPI-09-1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Machlin L.J. Hand Book of Vitamins: Nutritional, Biochemical, and Clinical Aspects. New York: Marcel Dekker; 1984. p. 556. [Google Scholar]
- [29].Li Z., Vance D.E. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49(6):1187–1194. doi: 10.1194/jlr.R700019-JLR200. [DOI] [PubMed] [Google Scholar]
- [30].Zeisel S.H. Choline and phosphatidylcholine. In: Shils M., Olson J.A., Shike M., Ross A.C., editors. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Williams & Wilkins; 1999. pp. 513–523. [Google Scholar]
- [31].Hollenbeck C.B. The importance of being choline. J Am Diet Assoc. 2010;110(8):1162–1165. doi: 10.1016/j.jada.2010.05.012. [DOI] [PubMed] [Google Scholar]
- [32].Bjelland I., Tell G.S., Vollset S.E., Konstantinova S., Ueland P.M. Choline in anxiety and depression: the Hordaland Health Study. Am J Clin Nutr. 2009;90(4):1056–1060. doi: 10.3945/ajcn.2009.27493. [DOI] [PubMed] [Google Scholar]
- [33].Chan K.C., So K.F., Wu E.X. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res. 2009;88(1):65–70. doi: 10.1016/j.exer.2008.10.002. [DOI] [PubMed] [Google Scholar]
- [34].Mizumori S.J.Y., Patterson T.A., Sternberg H., Rosenzweig M.R., Bennett E.L., Timiras P.S. Effects of dietary choline on memory and brain chemistry in aged mice. Neurobiol Aging. 1985;6(1):51–56. doi: 10.1016/0197-4580(85)90072-7. [DOI] [PubMed] [Google Scholar]
- [35].Van Beek A. H., Claassen J. A. The cerebrovascular role of the cholinergic neural system in Alzheimer’s disease. Behav Brain Res. 2011;221(2):537–542. doi: 10.1016/j.bbr.2009.12.047. [DOI] [PubMed] [Google Scholar]
- [36].Holmes-McNary M.Q., Loy R., Mar M.H., Albright C.D., Zeisel S.H. Apoptosis is induced by choline deficiency in fetal brain and in PC12 cells. Devel Brain Res. 1997;101:9–16. doi: 10.1016/S0165-3806(97)00044-8. [DOI] [PubMed] [Google Scholar]
- [37].Yen C.L., Mar M.H., Zeisel S.H. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 1999;13:135–142. [PubMed] [Google Scholar]
- [38].Fisher M.C., Zeisel S.H., Mar M.H., Sadler T.W. Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. Teratology. 2001;64:114–122. doi: 10.1002/tera.1053. [DOI] [PubMed] [Google Scholar]
- [39].Tees R.C. The influences of sex, rearing environment, and neonatal choline dietary supplementation on spatial and nonspatial learning and memory in adult rats. Dev Psychobio. 1999;35:328–342. doi: 10.1002/(SICI)1098-2302(199912)35:4<328::AID-DEV7>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- [40].Tees R.C., Mohammadi E., Adam T.J. Altering the impact of early rearing on the rat’s spatial memory with pre- and postnatal choline supplementation. Soc Neurosci Abstr. 1999;17:1401. [Google Scholar]
- [41].Albright C.D., Friedrich C.B., Brown E.C., Mar M.H., Zeisel S.H. Maternal dietary choline availability alters mitosis, apoptosis and the localization of TOAD-64 protein in the developing fetal rat septum. Brain Res Dev Brain Res. 1999;115:123–129. doi: 10.1016/S0165-3806(99)00057-7. [DOI] [PubMed] [Google Scholar]
- [42].Holler T., Cermak J.M., Blusztajn J.K. Dietary choline supplementation in pregnant rats increases hippocampal phospholipase D activity of the offspring. FASEB J. 1996;10:1653–1659. doi: 10.1096/fasebj.10.14.9002559. [DOI] [PubMed] [Google Scholar]
- [43].Meck W., Williams C. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. Neuroreport. 1997;8:3045–3051. doi: 10.1097/00001756-199709290-00009. [DOI] [PubMed] [Google Scholar]
- [44].Meck W., Williams C. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport. 1997;8:2831–2835. doi: 10.1097/00001756-199709080-00005. [DOI] [PubMed] [Google Scholar]
- [45].Meck W., Williams C. Perinatal choline supplementation increases the threshold for chunking in spatial memory. Neuroreport. 1997;8:3053–3059. doi: 10.1097/00001756-199709290-00010. [DOI] [PubMed] [Google Scholar]
- [46].Ricceri L., Berger-Sweeney J. Postnatal choline supplementation in preweanling mice: sexually dimorphic behavioral and neurochemical effects. Behav Neurosci. 1998;112:1387–1392. doi: 10.1037/0735-7044.112.6.1387. [DOI] [PubMed] [Google Scholar]
- [47].Sveinbjornsdottir S., Sander J.W.A.S., Upton D., Thompson P.J., Patsalos P.N., Hirt D., et al. The excitatory amino acid antagonist D-CPPene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res. 1993;16:165–174. doi: 10.1016/0920-1211(93)90031-2. [DOI] [PubMed] [Google Scholar]
- [48].Krystal J.H., Karper L.P., Seibyl J.P., Freeman G.K., Delaney R., Bremner J.D., et al. Subanesthetic effects of the non competitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry. 1994;51:199–214. doi: 10.1001/archpsyc.1994.03950030035004. [DOI] [PubMed] [Google Scholar]
- [49].Jentsch J.D., Roth R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20:201–225. doi: 10.1016/S0893-133X(98)00060-8. [DOI] [PubMed] [Google Scholar]
- [50].Zeisel S.H. Choline: needed for normal development of memory. J Am Coll Nutr. 2000;19(5Suppl):S528–531. doi: 10.1080/07315724.2000.10718976. [DOI] [PubMed] [Google Scholar]
- [51].Zeisel S.H. Nutritional importance of choline for brain development. J Am Coll Nutr. 2004;23(6Suppl):S621–626. doi: 10.1080/07315724.2004.10719433. [DOI] [PubMed] [Google Scholar]
- [52].Shaw G.M., Carmichael S.L., Yang W., Selvin S., Schaffer D.M. Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol. 2004;160:102–109. doi: 10.1093/aje/kwh187. [DOI] [PubMed] [Google Scholar]
- [53].Zeisel S.H. The fetal origins of memory: the role of dietary choline in optimal brain development. J Pediatr. 2006;149(5Suppl):S131–136. doi: 10.1016/j.jpeds.2006.06.065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Sanders L.M., Zeisel S.H. Choline: dietary requirements and role in brain development. Nutr Today. 2007;42(4):181–186. doi: 10.1097/01.NT.0000286155.55343.fa. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Signore C., Ueland P.M., Troendle J., Mills J.L. Choline concentrations in human maternal and cord blood and intelligence at 5 y of age. Am J Clin Nutr. 2008;87(4):896–902. doi: 10.1093/ajcn/87.4.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].Shaw G.M., Finnell R.H., Blom H.J., Carmichael S.L., Vollset S.E., Yang W., et al. Choline and risk of neural tube defects in a folate-fortified population. Epidemiology. 2009;20(5):714–719. doi: 10.1097/EDE.0b013e3181ac9fe7. [DOI] [PubMed] [Google Scholar]
- [57].van Praag H., Kempermann G., Gage F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–270. doi: 10.1038/6368. [DOI] [PubMed] [Google Scholar]
- [58].Markakis E.A., Gage F.H. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol. 1999;406:449–460. doi: 10.1002/(SICI)1096-9861(19990419)406:4<449::AID-CNE3>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- [59].Fisher M.C., Zeisel S.H., Mar M.H., Sadler T.W. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002;16:619–621. doi: 10.1096/fj.01-0564fje. [DOI] [PubMed] [Google Scholar]
- [60].Alonso-Aperte E., Varela-Moreiras G. Brain folates and DNA methylation in rats fed a choline deficient diet or treated with low doses of methotrexate. Int J Vitam Nutr Res. 1996;66:232–236. [PubMed] [Google Scholar]
- [61].Paulsen M., Ferguson-Smith A.C. DNA methylation in genomic imprinting, development, and disease. J Pathol. 2001;195:97–110. doi: 10.1002/path.890. [DOI] [PubMed] [Google Scholar]
- [62].Reinhart B., Eljanne M., Chaillet J.R. Shared role for differentially methylated domains of imprinted genes. Mol Cell Biol. 2002;22:2089–2098. doi: 10.1128/MCB.22.7.2089-2098.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Albright C.D., Tsai A.Y., Friedrich C.B., Mar M.H., Zeisel S.H. Choline availability alters embryonic development of the hippocampus and septum in the rat. Brain Res Dev Brain Res. 1999;113:13–20. doi: 10.1016/S0165-3806(98)00183-7. [DOI] [PubMed] [Google Scholar]
- [64].Albright C.D., Mar M.H., Friedrich C.B., Brown E.C., Zeisel S.H. Maternal choline availability alters the localization of p15Ink4B and p27Kip1 cyclin-dependent kinase inhibitors in the developing fetal rat brain hippocampus. Dev Neurosci. 2001;23:100–106. doi: 10.1159/000048701. [DOI] [PubMed] [Google Scholar]
- [65].Guseva M.V., Hopkins D.M., Pauly J.R. An autoradiographic analysis of rat brain nicotinic receptor plasticity following dietary choline modification. Pharmacol Biochem Behav. 2006;84(1):26–34. doi: 10.1016/j.pbb.2006.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [66].Tsuneki H., Klink R., Lena C., Korn H., Changeux J.P. Calcium mobilization elicited by two types of nicotinic acethylcholine receptors in mouse substantia nigra pars compacta. Eur J Neurosci. 2000;12(7):2475–2485. doi: 10.1046/j.1460-9568.2000.00138.x. [DOI] [PubMed] [Google Scholar]
- [67].Patterson D., Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 2000;61(1):75–111. doi: 10.1016/S0301-0082(99)00045-3. [DOI] [PubMed] [Google Scholar]
- [68].Albuquerque E.X., Pereira E.F., Mike A., Eisenberg H.M., Maelicke A., Alkondon M. Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav Brain Res. 2000;113(1–2):131–141. doi: 10.1016/S0166-4328(00)00208-4. [DOI] [PubMed] [Google Scholar]
- [69].Papke R.L., Porter Papke J.K. Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol. 2002;137:49–61. doi: 10.1038/sj.bjp.0704833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [70].Alkondon M., Pereira E.F., Cortes W.S., Maelicke A., Albuquerque E.X. Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci. 1997;9:2734–2742. doi: 10.1111/j.1460-9568.1997.tb01702.x. [DOI] [PubMed] [Google Scholar]
- [71].Albuquerque E.X., Alkondon M., Pereira E.F., Castro N.G., Schrattenholz A., Barbosa C.T., et al. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther. 1997;280(3):1117–1136. [PubMed] [Google Scholar]
- [72].Alkondon M., Braga M.F., Pereira E.F., Maelicke A., Albuquerque E.X. Alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus. Eur J Pharmacol. 2000;393(1–3):59–67. doi: 10.1016/S0014-2999(00)00006-6. [DOI] [PubMed] [Google Scholar]
- [73].Mike A., Castro N.G., Albuquerque E.X. Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res. 2000;882(1–2):155–168. doi: 10.1016/S0006-8993(00)02863-8. [DOI] [PubMed] [Google Scholar]
- [74].Alkondon M., Pereira E.F., Eisenberg H.M., Albuquerque E.X. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and dishinibition of neuronal networks. J Neurosci. 2000;20(1):66–75. doi: 10.1523/JNEUROSCI.20-01-00066.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Kihara T., Shimohama S., Sawada H., Kimura J., Kume T., Kochiyama H., et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol. 1997;42(2):159–163. doi: 10.1002/ana.410420205. [DOI] [PubMed] [Google Scholar]
- [76].Meyer E.M., Tay E.T., Zoltewicz J.A., Meyers C., King M.A., Papke R.L., et al. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties. J Pharmacol Exp Ther. 1998;284:1026–1032. [PubMed] [Google Scholar]
- [77].Strahlendorf J.C., Acosta S., Miles R., Strahlendorf H.K. Choline blocks AMPA-induced dark cell degeneration of Purkinje neurons: potential role of the α7 nicotinic receptor. Brain Res. 2001;901(1–2):71–78.. doi: 10.1016/S0006-8993(01)02270-3. [DOI] [PubMed] [Google Scholar]
- [78].Li Y., Meyer E.M., Walker D.W., Millard W.J., He Y.J., King M.A. Alpha7 nicotinic receptor activation inhibits ethanol-induced mitochondrial dysfunction, cytochrome c release and neurotoxicity in primary rat hippocampal neuronal cultures. J Neurochem. 2002;81:853–858. doi: 10.1046/j.1471-4159.2002.00891.x. [DOI] [PubMed] [Google Scholar]
- [79].Jonnala R.R., Buccafusco J.J. Relationship between the increased cell surface alpha 7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. J Neurosci Res. 2002;66(4):565–572. doi: 10.1002/jnr.10022. [DOI] [PubMed] [Google Scholar]
- [80].Utsugisawa K., Nagane Y., Obara D., Tohgi H. Overexpression of alpha7 nicotinic acetylcholine receptor prevents G1-arrest and DNA fragmentation in PC12 cells after hypoxia. J Neurochem. 2002;81:497–505. doi: 10.1046/j.1471-4159.2002.00823.x. [DOI] [PubMed] [Google Scholar]
- [81].Zanardi A., Leo G., Bigini G., Zoli M. Nicotine and neurodegeneration in ageing. Toxicol Lett. 2002;127:207–215. doi: 10.1016/S0378-4274(01)00502-1. [DOI] [PubMed] [Google Scholar]
- [82].Mudo G., Belluardo N., Fuxe K. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm. 2007;114(1):135–147. doi: 10.1007/s00702-006-0561-z. [DOI] [PubMed] [Google Scholar]
- [83].Toyohara J., Hashimoto K. α7 Nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in Schizophrenia and Alzheimer’s disease. Open Med Chem J. 2010;4:37–56. doi: 10.2174/1874104501004010037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Ferchmin P.A., Perez D., Eterovic V.A., de Vellis J. Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. J Pharmacol Exp Ther. 2003;305:1071–1078. doi: 10.1124/jpet.102.048173. [DOI] [PubMed] [Google Scholar]
- [85].Morley B.J., Garner L.L. Increases in the concentration of brain alpha-bungarotoxin binding sites induced by dietary choline are agedependent. Brain Res. 1986;378(2):315–319. doi: 10.1016/0006-8993(86)90934-0. [DOI] [PubMed] [Google Scholar]
- [86].Morley B.J., Fleck D.L. A time course and dose-response study of the regulation of brain nicotinic receptors by dietary choline. Brain Res. 1987;421(1–2):21–29. doi: 10.1016/0006-8993(87)91270-4. [DOI] [PubMed] [Google Scholar]
- [87].Coutcher J.B., Cawley G., Wecker L. Dietary choline supplementation increases the density of nicotine binding sites in rat brain. J Pharm Exp Ther. 1992;262(3):1128–1132. [PubMed] [Google Scholar]
- [88].Mainen Z.F., Sejnowski T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 1996;382:363–366. doi: 10.1038/382363a0. [DOI] [PubMed] [Google Scholar]
- [89].Meck W.H., Smith R.A., Williams C.L. Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav Neurosci. 1989;109:1234–1241. doi: 10.1037/0735-7044.103.6.1234. [DOI] [PubMed] [Google Scholar]
- [90].Williams C.L., Meck W.H., Heyer D.D., Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline-supplemented rats. Brain Res. 1998;794:225–238. doi: 10.1016/S0006-8993(98)00229-7. [DOI] [PubMed] [Google Scholar]
- [91].Zeisel S.H., Blusztajn J.K. Choline and human nutrition. Annu Rev Nutr. 1994;14:269–296. doi: 10.1146/annurev.nu.14.070194.001413. [DOI] [PubMed] [Google Scholar]
- [92].Detopoulou P., Panagiotakos D.B., Antonopoulou S., Pitsavos C., Stefanadis C. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr. 2008;87(2):424–430. doi: 10.1093/ajcn/87.2.424. [DOI] [PubMed] [Google Scholar]
- [93].Xu X., Gammon M.D., Zeisel S.H., Bradshaw P.T., Wetmur J.G., Teitelbaum S.L., et al. High intakes of coline and betaine reduce breast cancer mortality in a population-based study. FASEB J. 2009;23(11):4022–4028. doi: 10.1096/fj.09-136507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Tolvanen T., Yli-Kerttula T., Ujula T., Autio A., Lehikoinen P., Minn H., et al. Biodistribution and radiation dosimetry of [(11C)]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37(5):874–883. doi: 10.1007/s00259-009-1346-z. [DOI] [PubMed] [Google Scholar]
- [95].Ueland P.M. Choline and betaine in health and disease. J Inherit Metab Dis. 2010;34(1):3–15. doi: 10.1007/s10545-010-9088-4. [DOI] [PubMed] [Google Scholar]
- [96].Zeisel S.H. Importance of methyl donors during reproduction. Am J Clin Nutr. 2009;89(2):S673–677. doi: 10.3945/ajcn.2008.26811D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [97].Kritchevsky D., Klurfeld D.M. Influence of vegetable protein on gallstone formation in hamsters. Am J Clin Nutr. 1979;32:2174–2176. doi: 10.1093/ajcn/32.11.2174. [DOI] [PubMed] [Google Scholar]
- [98].Gerhard G.T., Duell P.B. Homocysteine and atherosclerosis. Curr Opin Lipidol. 1999;10:417–428. doi: 10.1097/00041433-199910000-00006. [DOI] [PubMed] [Google Scholar]
- [99].Olthof M.R., Brink E.J., Katan M.B., Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionineloading plasma homocysteine concentrations in healthy men. Am J Clin Nutr. 2005;82(1):111–117. doi: 10.1093/ajcn.82.1.111. [DOI] [PubMed] [Google Scholar]
- [100].Bidulescu A., Chambless L.E., Siega-Riz A.M., Zeisel S.H., Heiss G. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord. 2007;7:20. doi: 10.1186/1471-2261-7-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [101].Chiuve S., Giovannucci E., Hankinson S., Zeisel S.H., Dougherty L.W., Willett W.C., et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86:1073–1081. doi: 10.1093/ajcn/86.4.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [102].Dalmeijer G.W., Olthof M.R., Verhoef P., Bots M.L., van der Schouw Y.T. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women. Eur J Clin Nutr. 2008;62:386–394. doi: 10.1038/sj.ejcn.1602725. [DOI] [PubMed] [Google Scholar]
- [103].Van Meurs J., Dhonukshe-Rutten R.A., Pluijm S.M., Van der Klift M., de Jonge R., Lindemans J., et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350:2033–2041. doi: 10.1056/NEJMoa032546. [DOI] [PubMed] [Google Scholar]
- [104].Das S., Gupta K., Gupta A., Gaur S.N. Comparison of the efficacy of inhaled budesonide and oral choline in patients with allergic rhinitis. Saudi Med J. 2005;26(3):421–424. [PubMed] [Google Scholar]
- [105].DPhil T., Carr C.A., Guimares A.R., Worth J.L., Navia B.A., Gonzalez R.G. Brain choline-containing compounds are elevated in HIVpositive patients before the onset of AIDS dementia complex: A proton magnetic resonance spectroscopic study. Neurology. 1996;46:783–788. doi: 10.1212/wnl.46.3.783. [DOI] [PubMed] [Google Scholar]
- [106].Jones K.D., Barkley J.A., Warner J.O. Perinatal nutrition and immunity to infection. Pediatr Allergy Immunol. 2010;21(4Pt1):564–576. doi: 10.1111/j.1399-3038.2010.01002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [107].Chan J., Deng L., Mikael L.G., Yan J., Pickell L., Wu Q., et al. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcomes and heart development in mice. Am J Clin Nutr. 2010;91(4):1035–1043. doi: 10.3945/ajcn.2009.28754. [DOI] [PubMed] [Google Scholar]
- [108].Quintans C.J., Donaldson M.J., Bertolino M.N., Pasqualini R.S. Birth of two babies using oocytes that were cryopreserved in a cholinebased freezing medium. Hum Reprod. 2002;17(12):3149–3152. doi: 10.1093/humrep/17.12.3149. [DOI] [PubMed] [Google Scholar]
- [109].Bidulescu A., Chambless L.E., Siega-Riz A.M., Zeisel S.H., Heiss G. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the atherosclerosis risk in communities (ARIC) study. Nutr J. 2009;8(1):14. doi: 10.1186/1475-2891-8-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [110].Hasler C.M. The changing face of functional foods. JACN. 2000;19(5Suppl):S499–506. doi: 10.1080/07315724.2000.10718972. [DOI] [PubMed] [Google Scholar]
- [111].Buchman A.L., Dubin M.D., Moukarzel A.A., Jenden D.J., Roch M., Rice K.M., et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology. 1995;22(5):1399–1403. [PubMed] [Google Scholar]
- [112].Albright C.D., Liu R., Bethea T.C., da Costa K.A., Salganik R.I., Zeisel S.H. Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J. 1996;10(4):510–516. doi: 10.1096/fasebj.10.4.8647350. [DOI] [PubMed] [Google Scholar]
- [113].Stevens K.E., Adams C.E., Mellott T.J., Robbins E., Kisley M.A. Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats. Brain Res. 2008;1237:84–90. doi: 10.1016/j.brainres.2008.08.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [114].da Costa K.A., Niculescu M.D., Craciunescu C.N., Fischer L.M., Zeisel S.H. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84(1):88–94. doi: 10.1093/ajcn/84.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [115].da Costa K.A., Gaffney C.E., Fischer L.M., Zeisel S.H. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am J Clin Nutr. 2005;81(2):440–444. doi: 10.1093/ajcn.81.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].Dessau F.I., Oleson J.J. Nature of renal changes in acute choline deficiency. Proc Soc Exp Biol Med. 1947;64(3):278. doi: 10.3181/00379727-64-15767. [DOI] [PubMed] [Google Scholar]
- [117].Klein J., Köppen A., Löffelholz K. Small rises in plasma choline reverse the negative arteriovenous difference of brain choline. J Neurochem. 1990;55(4):1231–1236. doi: 10.1111/j.1471-4159.1990.tb03129.x. [DOI] [PubMed] [Google Scholar]
- [118].Klein J., Gonzalez A., Köppen A., Löffelholz K. Free choline and choline metabolites in rat brain and body fluids: sensitive determination and implications for choline supply to the brain. Neurochem Int. 1993;22(3):293–300. doi: 10.1016/0197-0186(93)90058-D. [DOI] [PubMed] [Google Scholar]
- [119].Klein J., Koppen A., Loffelholz K. Regulation of free choline in rat brain: dietary and pharmacological manipulations. Neurochem Int. 1998;32(5–6):479–485. doi: 10.1016/S0197-0186(97)00127-7. [DOI] [PubMed] [Google Scholar]
- [120].da Costa K.A., Kozyreva O.G., Song J., Galanko J.A., Fischer L.M., Zeisel S.H. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 2006;20(9):1336–1344. doi: 10.1096/fj.06-5734com. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [121].Zeisel S.H. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life. 2007;59(6):380–387. doi: 10.1080/15216540701468954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [122].Zeisel S.H. Genetic polymorphisms in methyl-group metabolism and epigenetics: lessons from humans and mouse models. Brain Res. 2008;1237:5–11. doi: 10.1016/j.brainres.2008.08.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [123].Zeisel S.H. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr. 2009;89(5):S1488–1493. doi: 10.3945/ajcn.2009.27113B. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [124].Zeisel S.H. Choline: clinical nutrigenetic/nutrigenomic approaches for identification of functions and dietary requirements. World Rev Nutr Diet. 2010;101:73–83. doi: 10.1159/000314512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [125].Niculescu M.D., Wu R., Guo Z., da Costa K.A., Zeisel S.H. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells. Toxicol Sci. 2007;96:321–326. doi: 10.1093/toxsci/kfl200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [126].Mellott T.J., Kowall N.W., Lopez-Coviella I., Blusztajn J.K. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats. Brain Res. 2007;1151:1–11. doi: 10.1016/j.brainres.2007.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [127].Raubenheimer P.J., Nyirenda M.J., Walker B.R. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes. 2006;55:2015–2020. doi: 10.2337/db06-0097. [DOI] [PubMed] [Google Scholar]
- [128].McCann J.C., Hudes M., Ames B.N. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev. 2006;30(5):696–712. doi: 10.1016/j.neubiorev.2005.12.003. [DOI] [PubMed] [Google Scholar]
- [129].Cheng R.K., Meck W.H. Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res. 2007;1186:242–254. doi: 10.1016/j.brainres.2007.10.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [130].Zeisel S.H. Is maternal diet supplementation beneficial? Optimal development of infant depends on mother’s diet. Am J Clin Nutr. 2009;89(2):S685–687. doi: 10.3945/ajcn.2008.26811F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [131].Meck W.H., Williams C.L., Cermak J.M., Blusztajn J.K. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci. 2007;1:7. doi: 10.3389/neuro.07.007.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [132].Brady R.J., Phelps P.E., Vaughn J.E. Neurogenesis of basal forebrain cholinergic neurons in rat. Dev Brain Res. 1989;47:81–92. doi: 10.1016/0165-3806(89)90110-7. [DOI] [PubMed] [Google Scholar]
- [133].Semba K., Fibiger H.C. Organization of central cholinergic systems. Prog Brain Res. 1989;79:37–63. doi: 10.1016/S0079-6123(08)62464-4. [DOI] [PubMed] [Google Scholar]
- [134].Loy R., Heyer D., Williams C.L., Meck W.H. Choline-induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol. 1991;295:373–382. doi: 10.1007/978-1-4757-0145-6_21. [DOI] [PubMed] [Google Scholar]
- [135].Glenn M.J., Kirby E.D., Gibson E.M., Wong-Goodrich S.J., Mellott T.J., Blusztajn J.K., et al. Age-related declines in exploratory behavior and markers of hippocampal plasticity are attenuated by prenatal choline supplementation in rats. Brain Res. 2008;1237:110–123. doi: 10.1016/j.brainres.2008.08.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [136].Napoli I., Blusztajn J.K., Mellott T.J. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res. 2008;1237:124–135. doi: 10.1016/j.brainres.2008.08.046. [DOI] [PubMed] [Google Scholar]
- [137].Nag N., Mellott T.J., Berger-Sweeney J.E. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res. 2008;1237:101–109. doi: 10.1016/j.brainres.2008.08.042. [DOI] [PubMed] [Google Scholar]
- [138].Olney J.W., Labruyere J., Wang G., Wozniak D.F., Price M.T., Sesma M.A., et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254:1515–1518. doi: 10.1126/science.1835799. [DOI] [PubMed] [Google Scholar]
- [139].Fix A.S., Wozniak D.F., Trex L.L., McEwan M., Miller J.P., Olney J.W. Quantitative analyses of factors influencing neuronal necrosis induced by MK-801 in the rat posterior cingulated/retrosplenial cortex. Brain Res. 1995;696:194–204. doi: 10.1016/0006-8993(95)00842-E. [DOI] [PubMed] [Google Scholar]
- [140].Horvath Z.C., Czopf J., Buzsaki G. Research report MK-801-induced neuronal damage in rats. Brain Res. 1997;753:181–195. doi: 10.1016/S0006-8993(96)01290-5. [DOI] [PubMed] [Google Scholar]
- [141].Noguchi K.K., Nemmers B., Farber N.B. Age has a similar influence on the susceptibility to NMDA antagonist-induced neurodegeneration in most brain regions. Brain Res Dev Brain Res. 2005;158:82–91. doi: 10.1016/j.devbrainres.2005.06.006. [DOI] [PubMed] [Google Scholar]
- [142].Biasi E. Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre and postadolescent rats. Brain Res. 2010;1362:117–132. doi: 10.1016/j.brainres.2010.09.012. [DOI] [PubMed] [Google Scholar]
- [143].Pinto L.S.N.M., Gualberto F.A.S., Pereira S.R.C., Barros P.A., Franco G.C., Ribeiro A.M. Dietary restriction protects against chronic-ethanolinduced changes in exploratory behavior in Wistar rats. Brain Res. 2006;1078:171–181. doi: 10.1016/j.brainres.2005.12.092. [DOI] [PubMed] [Google Scholar]
- [144].Lee J., Duan W., Mattson M.P. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82:1367–1375. doi: 10.1046/j.1471-4159.2002.01085.x. [DOI] [PubMed] [Google Scholar]
- [145].Lee J., Seroogy K.B., Mattson M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem. 2002;80(3):539–547. doi: 10.1046/j.0022-3042.2001.00747.x. [DOI] [PubMed] [Google Scholar]
- [146].Holmes G.L., Yang Y., Liu Z., Cermak J.M., Sarkisian M.R., Stafstrom C.E., et al. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res. 2002;48:3–13. doi: 10.1016/S0920-1211(01)00321-7. [DOI] [PubMed] [Google Scholar]
- [147].Bartus R.T., Dean R.L., Goas J.A., Lippa A.S. Age-related changes in passive avoidance retention: modulation with dietary choline. Science. 1980;209:301. doi: 10.1126/science.7384805. [DOI] [PubMed] [Google Scholar]
- [148].Hung M.C., Shibasaki K., Yoshida R., Sato M., Imaizumi K. Learning behaviour and cerebral protein kinase C, antioxidant status, lipid composition in senescence-accelerated mouse: influence of a phosphatidylcholine-vitamin B12 diet. Br J Nutr. 2001;86(2):163–171. doi: 10.1079/BJN2001391. [DOI] [PubMed] [Google Scholar]
- [149].Chung S.Y., Moriyama T., Uezu E., Uezu K., Hirata R., Yohena N., et al. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr. 1995;125(6):1484–1489. doi: 10.1093/jn/125.6.1484. [DOI] [PubMed] [Google Scholar]
- [150].Mervis R.F. Chronic dietary choline represses age-related loss of dendritic spines in mouse neocortical pyramidal cells. J Neuropathol Exp Neurol. 1982;41:363. doi: 10.1097/00005072-198205000-00076. [DOI] [Google Scholar]
- [151].Ladd S.L., Sommer S.A., LaBerge S., Toscano W. Effect of phosphatidylcholine on explicit memory. Clin Neuropharm. 1993;16:540–549. doi: 10.1097/00002826-199312000-00007. [DOI] [PubMed] [Google Scholar]
- [152].Levy R. Lecithin in Alzheimer’s disease. Lancet. 1982;2:671–672. doi: 10.1016/S0140-6736(82)92777-5. [DOI] [PubMed] [Google Scholar]
- [153].Little A., Levy R., Chuaqui-Kidd P., Hand D. A double-blind, placebo controlled trial of high-dose lecithin in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1985;48:736–742. doi: 10.1136/jnnp.48.8.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [154].Buchman A.L., Jenden D., Roch M. Plasma free, phospholipidbound and urinary free choline all decrease during a marathon run and may be associated with impaired performance. J Am Coll Nutr. 1999;18(6):598–601. doi: 10.1080/07315724.1999.10718894. [DOI] [PubMed] [Google Scholar]
- [155].Buchman A.L., Awal M., Jenden D., Roch M., Kang S.H. The effect of lecithin supplementation on plasma choline concentrations during a marathon. J Am Coll Nutr. 2000;19(6):768–770. doi: 10.1080/07315724.2000.10718076. [DOI] [PubMed] [Google Scholar]
- [156].Conlay L.A., Wurtman R.J., Blusztajn J.K., Covielia I.J., Maher T.J., Evoniuk G.E. Decreased plasma choline concentrations in marathon runners. N Engl J Med. 1986;175:892. [PubMed] [Google Scholar]
- [157].Sandage B.W., Sabounjian L.A., White R., Wurtman R.J. Choline citrate may enhance athletic performance. Physiologist. 1992;35:236. [Google Scholar]
- [158].Von Allworden H.N., Horn S., Kahl J., Feldheim W. The influence of lecithin on plasma choline concentrations in triathletes and adolescent runners during exercise. Eur J Appl Physiol. 1983;67:87–91. doi: 10.1007/BF00377711. [DOI] [PubMed] [Google Scholar]
- [159].Kumar R., Divekar H.M., Gupta V., Srivastava K.K. Antistress and adaptogenic activity of lecithin supplementation. J Altern Complement Med. 2002;8(4):487–492. doi: 10.1089/107555302760253685. [DOI] [PubMed] [Google Scholar]
- [160].Wecker L., Flynn C.J., Stouse M.R., Trommer B.A. Choline availability: effects on the toxicity of centrally active drugs. Drug Nutr Interact. 1982;1(2):125–130. [PubMed] [Google Scholar]
- [161].Klatskin G., Krehl W.A. The effect of alcohol on the choline requirement. II. Incidence of renal necrosis in weanling rats following short term ingestion of alcohol. J Exp Med. 1954;100(6):615–627. doi: 10.1084/jem.100.6.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [162].Adibhatla R.M., Hatcher J.F., Dempsey R.J. Citicoline: neuroprotective mechanisms in cerebral ischemia. J Neurochem. 2002;80(1):12–23. doi: 10.1046/j.0022-3042.2001.00697.x. [DOI] [PubMed] [Google Scholar]
- [163].Fioravanti M., Buckley A.E. Citicoline (Cognizin) in the treatment of cognitive impairment. Clin Interv Aging. 2006;1(3):247–251. doi: 10.2147/ciia.2006.1.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [164].Parisi V., Coppola G., Centofanti M., Oddone F., Angrisani A.M., Ziccardi L., et al. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog Brain Res. 2008;173:541–554. doi: 10.1016/S0079-6123(08)01137-0. [DOI] [PubMed] [Google Scholar]
- [165].Hurtado O., Lizasoain I., Moro M. Neuroprotection and recovery: recent data at the bench on citicoline. Stroke. 2011;42(1Suppl):S33–35. doi: 10.1161/STROKEAHA.110.597435. [DOI] [PubMed] [Google Scholar]
- [166].Secades J.J., Lorenzo J.L. Citicoline: pharmacological and clinical review, 2006 update. Methods Find Exp Clin Pharmacol. 2006;28(SupplB):1–56. [PubMed] [Google Scholar]
- [167].Green P.S., Simpkins J.W. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Develop Neurosci. 2000;18(4–5):347–358. doi: 10.1016/S0736-5748(00)00017-4. [DOI] [PubMed] [Google Scholar]
- [168].Gibbs R.B. Estrogen therapy and cognition: A review of the cholinergic hypothesis. Endocr Rev. 2010;31(2):224–253. doi: 10.1210/er.2009-0036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [169].Stiliani A., Bittigau P., Felderhoff-Mueser U., Manthey D., Sifringer M., Pesditschek S., et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol. 2005;58(2):266–276. doi: 10.1002/ana.20553. [DOI] [PubMed] [Google Scholar]
- [170].Granholm A.C., Ford K.A., Hyde L.A., Bimonte H.A., Hunter C.L., Nelson M., et al. Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiol Behav. 2002;77(2–3):371–385. doi: 10.1016/S0031-9384(02)00884-3. [DOI] [PubMed] [Google Scholar]
- [171].Resseguie M., Song J., Niculescu M.D., da Costa K.A., Randall T.A., Zeisel S.H. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 2007;21(10):2622–2632. doi: 10.1096/fj.07-8227com. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [172].Fischer L.M., da Costa K.A., Kwock L., Galanko J., Zeisel S.H. Dietary choline requirements of women: effects of estrogen and genetic variation. Am J Clin Nutr. 2010;92(5):1113–1119. doi: 10.3945/ajcn.2010.30064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [173].Resseguie M.E., da Costa K.A., Galanko J.A., Patel M., Davis I.J., Zeisel S.H. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J Biol Chem. 2011;286(2):1649–1658. doi: 10.1074/jbc.M110.106922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [174].Gibbs R.B. Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience. 2000;101(4):931–938. doi: 10.1016/S0306-4522(00)00433-4. [DOI] [PubMed] [Google Scholar]
- [175].Gibbs R.B. Effects of estrogen on basal forebrain cholinergic neurons vary as a function of dose and duration of treatment. Brain Res. 1997;757(1):10–16. doi: 10.1016/S0006-8993(96)01432-1. [DOI] [PubMed] [Google Scholar]
- [176].Nakamura N., Fujita H., Kawata M. Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience. 2002;109:473–485. doi: 10.1016/S0306-4522(01)00513-9. [DOI] [PubMed] [Google Scholar]