Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 11;28(3):309–315. doi: 10.1007/s12264-012-1232-8

Planar cell polarity genes, Celsr1-3, in neural development

Jia Feng 1, Qi Han 1, Libing Zhou 1,
PMCID: PMC5560321  PMID: 22622831

Abstract

flamingo is among the ‘core’ planar cell-polarity genes, protein of which belongs to a unique cadherin subfamily. In contrast to the classic cadherins, composed of several extracellular cadherin repeats, one transmembrane domain and one cytoplasmic segment linked to catenin binding, Drosophila Flamingo has seven transmembrane segments and a cytoplasmic tail with no catenin-binding sequence. In Drosophila, Flamingo has pleotropic roles in controlling epithelial polarity and neuronal morphogenesis. Three mammalian orthologs of flamingo, Celsr1-3, are widely expressed in the nervous system. Recent work has shown that Celsr1-3 play important roles in neural development, such as in axon guidance, neuronal migration, and cilium polarity. Celsr1-3 single-gene knockout mice exhibit different phenotypes, but there are cooperative interactions among these genes.

Keywords: planar cell polarity, Celsr genes, neural development

References

  • [1].Formstone C.J. 7TM-Cadherins: developmental roles and future challenges. Adv Exp Med Biol. 2010;706:14–36. doi: 10.1007/978-1-4419-7913-1_2. [DOI] [PubMed] [Google Scholar]
  • [2].Gray R.S., Roszko I., Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011;21:120–133. doi: 10.1016/j.devcel.2011.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Seifert J.R., Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet. 2007;8:126–138. doi: 10.1038/nrg2042. [DOI] [PubMed] [Google Scholar]
  • [4].Tissir F., Goffinet A.M. Planar cell polarity signaling in neural development. Curr Opin Neurobiol. 2010;20:572–577. doi: 10.1016/j.conb.2010.05.006. [DOI] [PubMed] [Google Scholar]
  • [5].Wu J., Mlodzik M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol. 2009;19:295–305. doi: 10.1016/j.tcb.2009.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Gao F.B., Kohwi M., Brenman J.E., Jan L.Y., Jan Y.N. Control of dendritic field formation in Drosophila: the roles of Flamingo and competition between homologous neurons. Neuron. 2000;28:91–101. doi: 10.1016/S0896-6273(00)00088-X. [DOI] [PubMed] [Google Scholar]
  • [7].Steinel M.C., Whitington P.M. The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells. Dev Biol. 2009;327:447–457. doi: 10.1016/j.ydbio.2008.12.026. [DOI] [PubMed] [Google Scholar]
  • [8].Berger-Muller S., Suzuki T. Seven-pass transmembrane cadherins: roles and emerging mechanisms in axonal and dendritic patterning. Mol Neurobiol. 2011;44:313–320. doi: 10.1007/s12035-011-8201-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Jones C., Chen P. Planar cell polarity signaling in vertebrates. Bioessays. 2007;29:120–132. doi: 10.1002/bies.20526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Wang Y., Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development. 2007;134:647–658. doi: 10.1242/dev.02772. [DOI] [PubMed] [Google Scholar]
  • [11].Zallen J.A. Planar polarity and tissue morphogenesis. Cell. 2007;129:1051–1063. doi: 10.1016/j.cell.2007.05.050. [DOI] [PubMed] [Google Scholar]
  • [12].Amonlirdviman K., Khare N.A., Tree D.R., Chen W.S., Axelrod J.D., Tomlin C.J. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science. 2005;307:423–426. doi: 10.1126/science.1105471. [DOI] [PubMed] [Google Scholar]
  • [13].Chen W.S., Antic D., Matis M., Logan C.Y., Povelones M., Anderson G.A., et al. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell. 2008;133:1093–1105. doi: 10.1016/j.cell.2008.04.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Strutt H., Strutt D. Asymmetric localisation of planar polarity proteins: Mechanisms and consequences. Semin Cell Dev Biol. 2009;20:957–963. doi: 10.1016/j.semcdb.2009.03.006. [DOI] [PubMed] [Google Scholar]
  • [15].Strutt D., Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol. 2007;302:181–194. doi: 10.1016/j.ydbio.2006.09.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Lee H., Adler P.N. The function of the frizzled pathway in the Drosophila wing is dependent on inturned and fuzzy. Genetics. 2002;160:1535–1547. doi: 10.1093/genetics/160.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Tio M., Ma C., Moses K. Extracellular regulators and pattern formation in the developing Drosophila retina. Biochem Soc Symp. 1996;62:61–75. [PubMed] [Google Scholar]
  • [18].Strutt D., Johnson R., Cooper K., Bray S. Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr Biol. 2002;12:813–824. doi: 10.1016/S0960-9822(02)00841-2. [DOI] [PubMed] [Google Scholar]
  • [19].Das G., Reynolds-Kenneally J., Mlodzik M. The atypical cadherin Flamingo links Frizzled and Notch signaling in planar polarity establishment in the Drosophila eye. Dev Cell. 2002;2:655–666. doi: 10.1016/S1534-5807(02)00147-8. [DOI] [PubMed] [Google Scholar]
  • [20].Adler P.N. Planar signaling and morphogenesis in Drosophila. Dev Cell. 2002;2:525–535. doi: 10.1016/S1534-5807(02)00176-4. [DOI] [PubMed] [Google Scholar]
  • [21].Weber U., Pataki C., Mihaly J., Mlodzik M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev Biol. 2008;316:110–123. doi: 10.1016/j.ydbio.2008.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Sweeney N.T., Li W., Gao F.B. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis. Dev Biol. 2002;247:76–88. doi: 10.1006/dbio.2002.0702. [DOI] [PubMed] [Google Scholar]
  • [23].Kimura H., Usui T., Tsubouchi A., Uemura T. Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J Cell Sci. 2006;119:1118–1129. doi: 10.1242/jcs.02832. [DOI] [PubMed] [Google Scholar]
  • [24].Reuter J.E., Nardine T.M., Penton A., Billuart P., Scott E.K., Usui T., et al. A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development. 2003;130:1203–1213. doi: 10.1242/dev.00319. [DOI] [PubMed] [Google Scholar]
  • [25].Hakeda-Suzuki S, Berger-Muller S, Tomasi T, Usui T, Horiuchi SY, Uemura T, et al. Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nat Neurosci, 14: 314–323. [DOI] [PubMed]
  • [26].Lee R.C., Clandinin T.R., Lee C.H., Chen P.L., Meinertzhagen I.A., Zipursky S.L. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neurosci. 2003;6:557–563. doi: 10.1038/nn1063. [DOI] [PubMed] [Google Scholar]
  • [27].Senti K.A., Usui T., Boucke K., Greber U., Uemura T., Dickson B.J. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr Biol. 2003;13:828–832. doi: 10.1016/S0960-9822(03)00291-4. [DOI] [PubMed] [Google Scholar]
  • [28].Chen P.L., Clandinin T.R. The cadherin Flamingo mediates leveldependent interactions that guide photoreceptor target choice in Drosophila. Neuron. 2008;58:26–33. doi: 10.1016/j.neuron.2008.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Bao H., Berlanga M.L., Xue M., Hapip S.M., Daniels R.W., Mendenhall J.M., et al. The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol Cell Neurosci. 2007;34:662–678. doi: 10.1016/j.mcn.2007.01.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Shima Y., Copeland N.G., Gilbert D.J., Jenkins N.A., Chisaka O., Takeichi M., et al. Differential expression of the seven-pass transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 protein during mouse development. Dev Dyn. 2002;223:321–332. doi: 10.1002/dvdy.10054. [DOI] [PubMed] [Google Scholar]
  • [31].Tissir F., De-Backer O., Goffinet A.M., Lambert de Rouvroit C. Developmental expression profiles of Celsr (Flamingo) genes in the mouse. Mech Dev. 2002;112:157–160. doi: 10.1016/S0925-4773(01)00623-2. [DOI] [PubMed] [Google Scholar]
  • [32].Curtin J.A., Quint E., Tsipouri V., Arkell R.M., Cattanach B., Copp A.J., et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol. 2003;13:1129–1133. doi: 10.1016/S0960-9822(03)00374-9. [DOI] [PubMed] [Google Scholar]
  • [33].Kibar Z., Vogan K.J., Groulx N., Justice M.J., Underhill D.A., Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet. 2001;28:251–255. doi: 10.1038/90081. [DOI] [PubMed] [Google Scholar]
  • [34].Wang J., Hamblet N.S., Mark S., Dickinson M.E., Brinkman B.C., Segil N., et al. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development. 2006;133:1767–1778. doi: 10.1242/dev.02347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Wang Y., Guo N., Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci. 2006;26:2147–2156. doi: 10.1523/JNEUROSCI.4698-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Ybot-Gonzalez P., Savery D., Gerrelli D., Signore M., Mitchell C.E., Faux C.H., et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development. 2007;134:789–799. doi: 10.1242/dev.000380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Shima Y., Kengaku M., Hirano T., Takeichi M., Uemura T. Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Dev Cell. 2004;7:205–216. doi: 10.1016/j.devcel.2004.07.007. [DOI] [PubMed] [Google Scholar]
  • [38].Tissir F., Bar I., Jossin Y., De Backer O., Goffinet A.M. Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci. 2005;8:451–457. doi: 10.1038/nn1428. [DOI] [PubMed] [Google Scholar]
  • [39].Wang Y., Thekdi N., Smallwood P.M., Macke J.P., Nathans J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci. 2002;22:8563–8573. doi: 10.1523/JNEUROSCI.22-19-08563.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Lyuksyutova A.I., Lu C.C., Milanesio N., King L.A., Guo N., Wang Y., et al. Anterior-posterior guidance of commissural axons by Wnt-Frizzled signaling. Science. 2003;302:1984–1988. doi: 10.1126/science.1089610. [DOI] [PubMed] [Google Scholar]
  • [41].Price D.J., Kennedy H., Dehay C., Zhou L., Mercier M., Jossin Y., et al. The development of cortical connections. Eur J Neurosci. 2006;23:910–920. doi: 10.1111/j.1460-9568.2006.04620.x. [DOI] [PubMed] [Google Scholar]
  • [42].Shafer B., Onishi K., Lo C., Colakoglu G., Zou Y. Vangl2 promotes Wnt/Planar Cell Polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev Cell. 2011;20:177–191. doi: 10.1016/j.devcel.2011.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Tissir F., Goffinet A.M. Expression of planar cell polarity genes during development of the mouse CNS. Eur J Neurosci. 2006;23:597–607. doi: 10.1111/j.1460-9568.2006.04596.x. [DOI] [PubMed] [Google Scholar]
  • [44].Zhou L., Bar I., Achouri Y., Campbell K., De Backer O., Hebert J.M., et al. Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice. Science. 2008;320:946–949. doi: 10.1126/science.1155244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Zhou L., Gall D., Qu Y., Prigogine C., Cheron G., Tissir F., et al. Maturation of “neocortex isole” in vivo in mice. J Neurosci. 2010;30:7928–7939. doi: 10.1523/JNEUROSCI.6005-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Zhou L., Qu Y., Tissir F., Goffinet A.M. Role of the atypical cadherin Celsr3 during development of the internal capsule. Cereb Cortex. 2009;19(Suppl1):i114–119. doi: 10.1093/cercor/bhp032. [DOI] [PubMed] [Google Scholar]
  • [47].Fenstermaker A.G., Prasad A.A., Bechara A., Adolfs Y., Tissir F., Goffinet A., et al. Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem. J Neurosci. 2010;30:16053–16064. doi: 10.1523/JNEUROSCI.4508-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Shima Y., Kawaguchi S.Y., Kosaka K., Nakayama M., Hoshino M., Nabeshima Y., et al. Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci. 2007;10:963–969. doi: 10.1038/nn1933. [DOI] [PubMed] [Google Scholar]
  • [49].Qu Y., Glasco D.M., Zhou L., Sawant A., Ravni A., Fritzsch B., et al. Atypical cadherins Celsr1-3 differentially regulate migration of facial branchiomotor neurons in mice. J Neurosci. 2010;30:9392–9401. doi: 10.1523/JNEUROSCI.4936-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Tissir F., Qu Y., Montcouquiol M., Zhou L., Komatsu K., Shi D., et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010;13:700–707. doi: 10.1038/nn.2555. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES