Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 11;28(3):209–221. doi: 10.1007/s12264-012-1234-6

Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3

Zhi-Rui Liu 1, Jie Tao 1, Bang-Qian Dong 1, Gang Ding 2, Zhi-Jun Cheng 2, Hui-Qiong He 1, Yong-Hua Ji 1,
PMCID: PMC5560322  PMID: 22622820

Abstract

Objective

In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes.

Methods

Two-electrode voltage clamp was used to record the whole-cell sodium current.

Results

The peak currents of Nav1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Nav1.3 at all concentrations.

Conclusion

This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Nav1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Nav1.3-targeted pathology.

Keywords: VGSC subtype, Nav1.3, VGSC site 4-specific modulator, BmK AS

References

  • [1].Franceschetti S., Guatteo E., Panzica F., Sancini G., Wanke E., Avanzini G. Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain Res. 1995;696:127–139. doi: 10.1016/0006-8993(95)00807-3. [DOI] [PubMed] [Google Scholar]
  • [2].Alonso A., Llinas R.R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature. 1989;342:175–177. doi: 10.1038/342175a0. [DOI] [PubMed] [Google Scholar]
  • [3].Klink R., Alonso A. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol. 1993;70:144–157. doi: 10.1152/jn.1993.70.1.144. [DOI] [PubMed] [Google Scholar]
  • [4].Silva L.R., Amitai Y., Connors B.W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science. 1991;251:432–435. doi: 10.1126/science.1824881. [DOI] [PubMed] [Google Scholar]
  • [5].Crill W.E. Persistent sodium current in mammalian central neurons. Annu Rev Physiol. 1996;58:349–362. doi: 10.1146/annurev.ph.58.030196.002025. [DOI] [PubMed] [Google Scholar]
  • [6].Catterall W.A. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 1992;72:S15–48. doi: 10.1152/physrev.1992.72.suppl_4.S15. [DOI] [PubMed] [Google Scholar]
  • [7].Catterall W.A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
  • [8].Beckh S., Noda M., Lubbert H., Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989;8:3611–3616. doi: 10.1002/j.1460-2075.1989.tb08534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Black J.A., Waxman S.G. Sodium channel expression: a dynamic process in neurons and non-neuronal cells. Dev Neurosci. 1996;18:139–152. doi: 10.1159/000111403. [DOI] [PubMed] [Google Scholar]
  • [10].Felts P.A., Yokoyama S., Dib-Hajj S., Black J.A., Waxman S.G. Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res. 1997;45:71–82. doi: 10.1016/S0169-328X(96)00241-0. [DOI] [PubMed] [Google Scholar]
  • [11].Holland K.D., Kearney J.A., Glauser T.A., Buck G., Keddache M., Blankston J.R., et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett. 2008;433:65–70. doi: 10.1016/j.neulet.2007.12.064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [12].Black J.A., Cummins T.R., Plumpton C., Chen Y.H., Hormuzdiar W., Clare J.J., et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82:2776–2785. doi: 10.1152/jn.1999.82.5.2776. [DOI] [PubMed] [Google Scholar]
  • [13].Dib-Hajj S.D., Fjell J., Cummins T.R., Zheng Z., Fried K., LaMotte R., et al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain. 1999;83:591–600. doi: 10.1016/S0304-3959(99)00169-4. [DOI] [PubMed] [Google Scholar]
  • [14].Hains B.C., Saab C.Y., Klein J.P., Craner M.J., Waxman S.G. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24:4832–4839. doi: 10.1523/JNEUROSCI.0300-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Kamata K., Kirisawa H. Changes in electrophysiological properties and noradrenaline response in vas deferens of diabetic rats. Eur J Pharmacol. 1998;350:237–241. doi: 10.1016/S0014-2999(98)00271-4. [DOI] [PubMed] [Google Scholar]
  • [16].Hains B.C., Klein J.P., Saab C.Y., Craner M.J., Black J.A., Waxman S.G. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci. 2003;23:8881–8892. doi: 10.1523/JNEUROSCI.23-26-08881.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Lampert A., Hains B.C., Waxman S.G. Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury. Exp Brain Res. 2006;174:660–666. doi: 10.1007/s00221-006-0511-x. [DOI] [PubMed] [Google Scholar]
  • [18].Kim C.H., Oh Y., Chung J.M., Chung K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res Mol Brain Res. 2001;95:153–161. doi: 10.1016/S0169-328X(01)00226-1. [DOI] [PubMed] [Google Scholar]
  • [19].Estacion M, Gasser A, Dib-Hajj SD, Waxman SG. A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp Neurol 224: 362–368. [DOI] [PubMed]
  • [20].Guo F., Yu N., Cai J.Q., Quinn T., Zong Z.H., Zeng Y.J., et al. Voltage-gated sodium channel Nav1.1, Nav1.3 and beta1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Res Bull. 2008;75:179–187. doi: 10.1016/j.brainresbull.2007.10.005. [DOI] [PubMed] [Google Scholar]
  • [21].Patton D.E., Isom L.L., Catterall W.A., Goldin A.L. The adult rat brain beta 1 subunit modifies activation and inactivation gating of multiple sodium channel alpha subunits. J Biol Chem. 1994;269:17649–17655. [PubMed] [Google Scholar]
  • [22].Feng X.H., Chen J.X., Liu Y., Ji Y.H. Electrophysiological characterization of BmK I, an alpha-like scorpion toxin, on rNav1.5 expressed in HEK293t cells. Toxicol In Vitro. 2008;22:1582–1587. doi: 10.1016/j.tiv.2008.06.009. [DOI] [PubMed] [Google Scholar]
  • [23].He H., Liu Z., Dong B., Zhou J., Zhu H., Ji Y. Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J. 2010;431:289–298. doi: 10.1042/BJ20100517. [DOI] [PubMed] [Google Scholar]
  • [24].Tan Z.Y., Xiao H., Mao X., Wang C.Y., Zhao Z.Q., Ji Y.H. The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na+ channels. Neuropharmacology. 2001;40:352–357. doi: 10.1016/S0028-3908(00)00168-4. [DOI] [PubMed] [Google Scholar]
  • [25].Zhu M.M., Tao J., Tan M., Yang H.T., Ji Y.H. U-shaped dose-dependent effects of BmK AS, a unique scorpion polypeptide toxin, on voltage-gated sodium channels. Br J Pharmacol. 2009;159:1895–1903. doi: 10.1111/j.1476-5381.2009.00471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Chen B., Ji Y. Antihyperalgesia effect of BmK AS, a scorpion toxin, in rat by intraplantar injection. Brain Res. 2002;952:322–326. doi: 10.1016/S0006-8993(02)03241-9. [DOI] [PubMed] [Google Scholar]
  • [27].Chen J., Feng X.H., Shi J., Tan Z.Y., Bai Z.T., Liu T., et al. The anti-nociceptive effect of BmK AS, a scorpion active polypeptide, and the possible mechanism on specifically modulating voltage-gated Na+ currents in primary afferent neurons. Peptides. 2006;27:2182–2192. doi: 10.1016/j.peptides.2006.03.026. [DOI] [PubMed] [Google Scholar]
  • [28].Liu T., Pang X.Y., Jiang F., Bai Z.T., Ji Y.H. Anti-nociceptive effects induced by intrathecal injection of BmK AS, a polypeptide from the venom of Chinese-scorpion Buthus martensi Karsch, in rat formalin test. J Ethnopharmacol. 2008;117:332–338. doi: 10.1016/j.jep.2008.02.003. [DOI] [PubMed] [Google Scholar]
  • [29].Zhao R., Weng C.C., Feng Q., Chen L., Zhang X.Y., Zhu H.Y., et al. Anticonvulsant activity of BmK AS, a sodium channel site 4-specific modulator. Epilepsy Behav. 2011;20:267–276. doi: 10.1016/j.yebeh.2010.12.006. [DOI] [PubMed] [Google Scholar]
  • [30].Tan M., Zhu M.M., Liu Y., Cheng H.W., Ji Y.H. Effects of BmK AS on Nav1.2 expressed in Xenopus laevis oocytes. Cell Biol Toxicol. 2008;24:143–149. doi: 10.1007/s10565-007-9023-0. [DOI] [PubMed] [Google Scholar]
  • [31].Tan Z.Y., Chen J., Shun H.Y., Feng X.H., Ji Y.H. Modulation of BmK AS, a scorpion neurotoxic polypeptide, on voltage-gated Na+ channels in B104 neuronal cell line. Neurosci Lett. 2003;340:123–126. doi: 10.1016/S0304-3940(03)00094-6. [DOI] [PubMed] [Google Scholar]
  • [32].Liu Y.R., Ren H. M., Ji Y. H., Ohishi T., Mochizuki T., Hoahino M., et al. Purification and the partial amino acid sequence of a novel activator of ryanodine (bmk as-1) from mammalian skeletal muscle. Biomed Res. 1996;17:451–455. [Google Scholar]
  • [33].Ji Y.H., Mansuelle P., Terakawa S., Kopeyan C., Yanaihara N., Hsu K., et al. Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity. Toxicon. 1996;34:987–1001. doi: 10.1016/0041-0101(96)00065-7. [DOI] [PubMed] [Google Scholar]
  • [34].Goldin A.L. Expression of ion channels by injection of mRNA into Xenopus oocytes. Methods Cell Biol. 1991;36:487–509. doi: 10.1016/S0091-679X(08)60293-9. [DOI] [PubMed] [Google Scholar]
  • [35].Shichor I., Zlotkin E., Ilan N., Chikashvili D., Stuhmer W., Gordon D., et al. Domain 2 of Drosophila para voltage-gated sodium channel confers insect properties to a rat brain channel. J Neurosci. 2002;22:4364–4371. doi: 10.1523/JNEUROSCI.22-11-04364.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Smith M.R., Smith R.D., Plummer N.W., Meisler M.H., Goldin A.L. Functional analysis of the mouse Scn8a sodium channel. J Neurosci. 1998;18:6093–6102. doi: 10.1523/JNEUROSCI.18-16-06093.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Cummins T.R., Aglieco F., Renganathan M., Herzog R.I., Dib-Hajj S.D., Waxman S.G. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci. 2001;21:5952–5961. doi: 10.1523/JNEUROSCI.21-16-05952.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Meadows L.S., Chen Y.H., Powell A.J., Clare J.J., Ragsdale D.S. Functional modulation of human brain Nav1.3 sodium channels, expressed in mammalian cells, by auxiliary beta 1, beta 2 and beta 3 subunits. Neuroscience. 2002;114:745–753. doi: 10.1016/S0306-4522(02)00242-7. [DOI] [PubMed] [Google Scholar]
  • [39].John V.H., Main M.J., Powell A.J., Gladwell Z.M., Hick C., Sidhu H.S., et al. Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7-23. Neuropharmacology. 2004;46:425–438. doi: 10.1016/j.neuropharm.2003.09.018. [DOI] [PubMed] [Google Scholar]
  • [40].Gordon D., Ilan N., Zilberberg N., Gilles N., Urbach D., Cohen L., et al. An ‘Old World’ scorpion beta-toxin that recognizes both insect and mammalian sodium channels. Eur J Biochem. 2003;270:2663–2670. doi: 10.1046/j.1432-1033.2003.03643.x. [DOI] [PubMed] [Google Scholar]
  • [41].Li Y.J., Liu Y., Ji Y.H. BmK AS: new scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage-gated sodium channels. J Neurosci Res. 2000;61:541–548. doi: 10.1002/1097-4547(20000901)61:5<541::AID-JNR9>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • [42].Jia L.Y., Zhang J.W., Ji Y.H. Biosensor binding assay of BmK AS-1, a novel Na+ channel-blocking scorpion ligand on rat brain synaptosomes. Neuroreport. 1999;10:3359–3362. doi: 10.1097/00001756-199911080-00019. [DOI] [PubMed] [Google Scholar]
  • [43].Liu Z.R., Ye P., Ji Y.H. Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by Bmk neurotoxins. Protein Cell. 2011;2:437–444. doi: 10.1007/s13238-011-1064-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Cestele S., Catterall W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–892. doi: 10.1016/S0300-9084(00)01174-3. [DOI] [PubMed] [Google Scholar]
  • [45].Zuo X.P., Ji Y.H. Molecular mechanism of scorpion neurotoxins acting on sodium channels: insight into their diverse selectivity. Mol Neurobiol. 2004;30:265–278. doi: 10.1385/MN:30:3:265. [DOI] [PubMed] [Google Scholar]
  • [46].de la Vega R.C., Possani L.D. Novel paradigms on scorpion toxins that affects the activating mechanism of sodium channels. Toxicon. 2007;49:171–180. doi: 10.1016/j.toxicon.2006.09.016. [DOI] [PubMed] [Google Scholar]
  • [47].Ulbricht W. Sodium channel inactivation: molecular determinants and modulation. Physiol Rev. 2005;85:1271–1301. doi: 10.1152/physrev.00024.2004. [DOI] [PubMed] [Google Scholar]
  • [48].Tan Z.Y., Chen J., Feng X.H., Susumu T., Ji Y.H. Modulation of intracellular Na+ concentration by BmK AS, a scorpion toxin, in B104 cell line. Neuroreport. 2004;15:13–16. doi: 10.1097/00001756-200410050-00006. [DOI] [PubMed] [Google Scholar]
  • [49].Oh Y., Waxman S.G. Novel splice variants of the voltage-sensitive sodium channel alpha subunit. Neuroreport. 1998;9:1267–1272. doi: 10.1097/00001756-199805110-00002. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES