Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 11;28(3):222–232. doi: 10.1007/s12264-012-1236-4

Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice

Yan-Jiong Chen 2, Yan-Ling Liu 1,3, Qing Zhong 1, Yan-Fang Yu 4, Hong-Liang Su 1, Haroldo A Toque 4, Yong-Hui Dang 1, Feng Chen 4, Ming Xu 5, Teng Chen 1,
PMCID: PMC5560324  PMID: 22622821

Abstract

Objective

The purpose of this study was to investigate the effect of methamphetamine (MA) on spatial learning and memory and the role of tetrahydropalmatine (THP) in MA-induced changes in these phenomena in mice.

Methods

Male C57BL/6 mice were randomly divided into eight groups, according to different doses of MA, different doses of THP, treatment with both MA and THP, and saline controls. Spatial learning and memory were assessed using the Morris water maze. Western blot was used to detect the expression of extracellular signal-regulated protein kinase (ERK) in the mouse prefrontal cortex (PFC) and hippocampus.

Results

Repeated MA treatment significantly increased the escape latency in the learning phase and decreased the number of platform site crossings in the memory-test phase. ERK1/2 expression was decreased in the PFC but not in the hippocampus of the MA-treated mice. Repeated THP treatment alone did not affect the escape latency, the number of platform site crossings or the total ERK1/2 expression in the brain. Statistically significantly shorter escape latencies and more platform site crossings occurred in MA+THP-treated mice than in MA-treated mice.

Conclusion

Repeated MA administration impairs spatial learning and memory in mice, and its co-administration with THP prevents this impairment, which is probably attributable to changed ERK1/2 expression in the PFC. This study contributes to uncovering the mechanism underlying MA abuse, and to exploring potential therapies.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12264-012-1236-4 and is accessible for authorized users.

Keywords: methamphetamine, tetrahydropalmatine, Morris water maze, ERK, prefrontal cortex, hippocampus, drug addiction

Electronic supplementary material

12264_2012_1236_MOESM1_ESM.zip (395.8KB, zip)

Supplementary material, approximately 395 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12264-012-1236-4 and is accessible for authorized users.

Contributor Information

Feng Chen, Email: fchen@georgiahealth.edu.

Teng Chen, Phone: +86-29-82657977, Phone: +1-706-3999031, FAX: +1-706-7211900, Email: chenteng@mail.xjtu.edu.cn.

References

  • [1].Sugaya N., Haraguchi A., Ogai Y., Senoo E., Higuchi S., Umeno M., et al. Family dysfunction differentially affects alcohol and methamphetamine dependence: a view from the addiction severity index in Japan. Int J Environ Res Public Health. 2011;8:3922–3937. doi: 10.3390/ijerph8103922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Naidoo S., Smit D. Methamphetamine abuse: a review of the literature and case report in a young male. SADJ. 2011;66:124–127. [PubMed] [Google Scholar]
  • [3].Nagai T., Yamada K. Molecular mechanism for methamphetamine-induced memory impairment. Jpn J Alcohol Stud Drug Depend. 2010;45:81–91. [PubMed] [Google Scholar]
  • [4].Ciccarone D. Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care. 2011;38:41–58. doi: 10.1016/j.pop.2010.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Noda Y., Mouri A., Ando Y., Waki Y., Yamada S.N., Yoshimi A., et al. Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol. 2010;13:1343–1354. doi: 10.1017/S1461145710000222. [DOI] [PubMed] [Google Scholar]
  • [6].Nagai T., Takuma K., Dohniwa M., Ibi D., Mizoguchi H., Kamei H., et al. Repeated methamphetamine treatment impairs spatial working memory in rats: reversal by clozapine but not haloperidol. Psychopharmacology (Berl) 2007;194:21–32. doi: 10.1007/s00213-007-0820-1. [DOI] [PubMed] [Google Scholar]
  • [7].Chen F., Pandey D., Chadli A., Catravas J.D., Chen T., Fulton D.J. Hsp90 regulates NADPH oxidase activity and is necessary for superoxide but not hydrogen peroxide production. Antioxid Redox Signal. 2011;14:2107–2119. doi: 10.1089/ars.2010.3669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Cherng C.G., Tsai C.W., Tsai Y.P., Ho M.C., Kao S.F., Yu L. Methamphetamine-disrupted sensory processing mediates conditioned place preference performance. Behav Brain Res. 2007;182:103–108. doi: 10.1016/j.bbr.2007.05.010. [DOI] [PubMed] [Google Scholar]
  • [9].Kuo Y.M., Liang K.C., Chen H.H., Cherng C.G., Lee H.T., Lin Y., et al. Cocaine-but not methamphetamine-associated memory requires de novo protein synthesis. Neurobiol Learn Mem. 2007;87:93–100. doi: 10.1016/j.nlm.2006.06.004. [DOI] [PubMed] [Google Scholar]
  • [10].Schroder N., O’Dell S.J., Marshall J.F. Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse. 2003;49:89–96. doi: 10.1002/syn.10210. [DOI] [PubMed] [Google Scholar]
  • [11].Jin G.Z., Zhou Q.T., Chen L.J. New pharmacological effects of tetrahydroprotoberberines on dopamine receptor. Bull Nat Sci Found China. 2000;14:300–304. [Google Scholar]
  • [12].Kin K.C., Tang X.C., Hsu B. Studies on the Pharmacological Actions of Corydalis. Viii. Structure-Activity Relationship of Analogues of Corydalis B (Tetrahydropalmatine) Acta Pharm Sin. 1962;40:487–498. [PubMed] [Google Scholar]
  • [13].Kin K.C., Tsoch S.Y., Tang X.C., Hsu B. Pharmacologic actions of tetrahydroberberine on the central nervous system. Acta Physiol Sin. 1962;25:182–190. [Google Scholar]
  • [14].Kin K.C., Tsou K., Tang X.C., Chen J.T., Hsu B. Studies on the pharmacological actions of Corydalis. VI. Effects of corydalis B on the central nervous system. Acta physiol sin. 1960;24:110–120. [PubMed] [Google Scholar]
  • [15].Chang C.K., Lin M.T. DL-Tetrahydropalmatine may act through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats. Neurosci Lett. 2001;307:163–166. doi: 10.1016/S0304-3940(01)01962-0. [DOI] [PubMed] [Google Scholar]
  • [16].Liu Y.L., Liang J.H., Yan L.D., Su R.B., Wu C.F., Gong Z.H. Effects of l-tetrahydropalmatine on locomotor sensitization to oxycodone in mice. Acta Pharmacol Sin. 2005;26:533–538. doi: 10.1111/j.1745-7254.2005.00101.x. [DOI] [PubMed] [Google Scholar]
  • [17].Mantsch J.R., Li S.J., Risinger R., Awad S., Katz E., Baker D.A., et al. Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaine-induced reinstatement in rats. Psychopharmacology (Berl) 2007;192:581–591. doi: 10.1007/s00213-007-0754-7. [DOI] [PubMed] [Google Scholar]
  • [18].Vorhees C.V., Williams M.T. Morris water maze: procedures for as sessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–858. doi: 10.1038/nprot.2006.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Paxinos G., Franklin K.B. The Mouse Brain in Stereotaxic Coordinates. 2nd ed. San Diego, CA: Academic Press; 2001. [Google Scholar]
  • [20].Kelley A.E., Berridge K.C. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–3311. doi: 10.1523/JNEUROSCI.22-09-03306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Marshall J.F., Belcher A.M., Feinstein E.M., O’Dell S.J. Methamphetamine-induced neural and cognitive changes in rodents. Addiction. 2007;102(Suppl1):61–69. doi: 10.1111/j.1360-0443.2006.01780.x. [DOI] [PubMed] [Google Scholar]
  • [22].Sulzer D., Chen T.K., Lau Y.Y., Kristensen H., Rayport S., Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci. 1995;15:4102–4108. doi: 10.1523/JNEUROSCI.15-05-04102.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Han J.S., Poo M.M. Neuroscience. Beijing: Peking University Medical Press; 2009. p. 1165. [Google Scholar]
  • [24].Swant J., Chirwa S., Stanwood G., Khoshbouei H. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One. 2010;5:e11382. doi: 10.1371/journal.pone.0011382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Warden M.R., Miller E.K. Task-dependent changes in short-term memory in the prefrontal cortex. J Neurosci. 2010;30:15801–15810. doi: 10.1523/JNEUROSCI.1569-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Puig M.V., Gulledge A.T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44:449–464. doi: 10.1007/s12035-011-8214-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Abekawa T., Ohmori T., Koyama T. Tolerance to the neurotoxic effect of methamphetamine in rats behaviorally sensitized to methamphetamine or amphetamine. Brain Res. 1997;767:34–44. doi: 10.1016/S0006-8993(97)00542-8. [DOI] [PubMed] [Google Scholar]
  • [28].Squire L.R., Stark C.E., Clark R.E. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279–306. doi: 10.1146/annurev.neuro.27.070203.144130. [DOI] [PubMed] [Google Scholar]
  • [29].Gupta N., Zhang H., Liu P. Chronic difluoromethylornithine treatment impairs spatial learning and memory in rats. Pharmacol Biochem Behav. 2012;100:464–473. doi: 10.1016/j.pbb.2011.10.011. [DOI] [PubMed] [Google Scholar]
  • [30].Swant J., Wagner J.J. Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine receptor. Learn Mem. 2006;13:161–167. doi: 10.1101/lm.63806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Chen F., Fulton D.J. An inhibitor of protein arginine methyltransferases, 7,7′-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1), is a potent scavenger of NADPH-oxidase-derived superoxide. Mol Pharmacol. 2010;77:280–287. doi: 10.1124/mol.109.061077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Hu J.Q., Wen Z.H., Lai S.L. A preliminary study on the memory attribution and methodology in Morris water maze test. J Guangzhou Univ Tradit Chin Med. 2000;17:117–119. [Google Scholar]
  • [33].Saab B.J., Saab A.M., Roder J.C. Statistical and theoretical considerations for the platform re-location water maze. J Neurosci Methods. 2011;198:44–52. doi: 10.1016/j.jneumeth.2011.03.008. [DOI] [PubMed] [Google Scholar]
  • [34].Leon W.C., Bruno M.A., Allard S., Nader K., Cuello A.C. Engagement of the PFC in consolidation and recall of recent spatial memory. Learn Mem. 2010;17:297–305. doi: 10.1101/lm.1804410. [DOI] [PubMed] [Google Scholar]
  • [35].Cadet J.L., Krasnova I.N. Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol. 2009;88:101–119. doi: 10.1016/S0074-7742(09)88005-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Riddle E.L., Fleckenstein A.E., Hanson G.R. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006;8:E413–418. doi: 10.1007/BF02854914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Chapman D.E., Hanson G.R., Kesner R.P., Keefe K.A. Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. J Pharmacol Exp Ther. 2001;296:520–527. [PubMed] [Google Scholar]
  • [38].Pages G., Stanley E.R., Le Gall M., Brunet A., Pouyssegur J. The mouse p44 mitogen-activated protein kinase (extracellular signal-regulated kinase 1) gene. Genomic organization and structure of the 5′-flanking regulatory region. J Biol Chem. 1995;270:26986–26992. doi: 10.1074/jbc.270.45.26986. [DOI] [PubMed] [Google Scholar]
  • [39].Kim S.C., Hahn J.S., Min Y.H., Yoo N.C., Ko Y.W., Lee W.J. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood. 1999;93:3893–3899. [PubMed] [Google Scholar]
  • [40].Mizoguchi H., Takuma K., Fukakusa A., Ito Y., Nakatani A., Ibi D., et al. Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology (Berl) 2008;196:233–241. doi: 10.1007/s00213-007-0955-0. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12264_2012_1236_MOESM1_ESM.zip (395.8KB, zip)

Supplementary material, approximately 395 KB.


Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES