Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2012 Jul 11;28(3):282–290. doi: 10.1007/s12264-012-1242-6

Possible novel roles of poly(rC)-binding protein 1 in SH-SY5Y neurocytes: an analysis using a dynamic Bayesian network

Li-Rong Huo 1,2, Jian-Tao Liang 3, Jun-Hua Zou 2, Lan-Ying Wang 1, Qi Li 4, Xiao-Min Wang 1,
PMCID: PMC5560330  PMID: 22622828

Abstract

Objective

Poly(rC)-binding protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family and participates in transcriptional and translational regulation. Previous work has identified transcripts targeted by both knockdown and overexpression of PCBP1 in SH-SY5Y neuroblastoma cells using a microarray or ProteomeLab™ protein fractionation 2-dimensions (PF-2D) and quadrupole time-of-flight mass spectrometer. The present study aimed to further determine whether these altered transcripts from major pathways (such as Wnt signaling, TGF-β signaling, cell cycling, and apoptosis) and two other genes, H2AFX and H2BFS (screened by PF-2D), have spatial relationships.

Methods

The genes were studied by qRT-PCR, and dynamic Bayesian network analysis was used to rebuild the coordination network of these transcripts.

Results

PCBP1 controlled the expression or activity of the seven transcripts. Moreover, PCBP1 indirectly regulated MAP2K2, FOS, FST, TP53 and WNT7B through H2AFX or regulated these genes through SAT. In contrast, TP53 and WNT7B are regulated by other genes.

Conclusion

The seven transcripts and PCBP1 are closely associated in a spatial interaction network.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12264-012-1242-6 and is accessible for authorized users.

Keywords: PCBP1, RNA interference, overexpression, Bayesian network

Electronic supplementary material

12264_2012_1242_MOESM1_ESM.zip (214.5KB, zip)

Supplementary material, approximately 214 KB.

Footnotes

These authors contributed equally to this work.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12264-012-1242-6 and is accessible for authorized users.

References

  • [1].Leffers H., Dejgaard K., Celis J.E. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three Khomologous (KH) domains. Eur J Biochem. 1995;230:447–453. doi: 10.1111/j.1432-1033.1995.tb20581.x. [DOI] [PubMed] [Google Scholar]
  • [2].Adams D.J., Beveridge D.J., van der Weyden L., Mangs H., Leedman P.J., Morris B.J. HADHB, HuR, and CP1 bind to the distal 3-Untranslated region of human renin mRNA and differentially modulate Renin expression. J Biol Chem. 2003;278:44894–44903. doi: 10.1074/jbc.M307782200. [DOI] [PubMed] [Google Scholar]
  • [3].Guillonneau F., Guieysse A.L., Le Caer J.P., Rossier J., Praseuth D. Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic Acids Res. 2001;29:2427–2436. doi: 10.1093/nar/29.11.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Chkheidze A.N., Liebhaber S.A. A novel set of nuclear localization signals determine distributions of the αCP RNA-binding proteins. Mol Cell Biol. 2003;23:8405–8415.. doi: 10.1128/MCB.23.23.8405-8415.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Pillai M.R., Chacko P., Kesari L.A., Jayaprakash P.G., Jayaram H.N., Antony A.C. Expression of folate receptors and heterogeneous nuclear ribonucleoprotein E1 in women with human papillomavirus mediated transformation of cervical tissue to cancer. J Clin Pathol. 2003;56:569–574. doi: 10.1136/jcp.56.8.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Ostareck-Lederer A., Ostareck D.H. Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1/E2. Biol Cell. 2004;96:407–411. doi: 10.1016/j.biolcel.2004.03.010. [DOI] [PubMed] [Google Scholar]
  • [7].Berry A.M., Flock K.E., Loh H.H., Ko J.L. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells. Biochem Biophys Res Commun. 2006;349:1378–1386. doi: 10.1016/j.bbrc.2006.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Xu X., Joh H.D., Pin S., Schiller N.I., Prange C., Burger P.C., et al. Expression of multiple larger-sized transcripts for several genes in oligodendrogliomas: potential markers for glioma subtype. Cancer Lett. 2001;171:67–77. doi: 10.1016/S0304-3835(01)00573-0. [DOI] [PubMed] [Google Scholar]
  • [9].Thyagarajan A., Szaro B.G. Phylogenetically conserved binding of specific k homology domain proteins to the 3′-untranslated region of the vertebrate middle neurofilament mRNA. J Biol Chem. 2004;279:49680–49688. doi: 10.1074/jbc.M408915200. [DOI] [PubMed] [Google Scholar]
  • [10].Thyagarajan A., Szaro B.G. Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Res. 2008;1189:33–42. doi: 10.1016/j.brainres.2007.11.012. [DOI] [PubMed] [Google Scholar]
  • [11].Huo L.R., Zhong N. Identification of transcripts and translateants targeted by overexpressed PCBP1. Biochim Biophys Acta. 2008;1784:1524–1533. doi: 10.1016/j.bbapap.2008.06.017. [DOI] [PubMed] [Google Scholar]
  • [12].Huo L.R., Ju W., Yan M., Zou J.H., Yan W., He B., et al. Identification of differentially expressed transcripts and translatants targeted by knock-down of endogenous PCBP1. Biochim Biophys Acta. 2010;1804:1954–1964. doi: 10.1016/j.bbapap.2010.07.002. [DOI] [PubMed] [Google Scholar]
  • [13].Kim J.H., Hahm B., Kim Y.K., Choi M., Jang S.K. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol. 2000;298:395–405. doi: 10.1006/jmbi.2000.3687. [DOI] [PubMed] [Google Scholar]
  • [14].Zhong N., Radu G., Ju W., Brown W.T. Novel progerin-interactive partner proteins hnRNP E1, EGF, Mel 18, and UBC9 interact with lamin A/C. Biochem Biophys Res Commun. 2005;338:855–861. doi: 10.1016/j.bbrc.2005.10.020. [DOI] [PubMed] [Google Scholar]
  • [15].Zou M., Conzen S.D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 2005;21:71–79. doi: 10.1093/bioinformatics/bth463. [DOI] [PubMed] [Google Scholar]
  • [16].Imoto S., Goto T., Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pac Symp Biocomput. 2002;7:175–186. [PubMed] [Google Scholar]
  • [17].Kim S.Y., Imoto S., Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 2003;4:228–235. doi: 10.1093/bib/4.3.228. [DOI] [PubMed] [Google Scholar]
  • [18].Van Gurp M., Festjens N., Van Loo G., Saelens X., Vandenabeele P. Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun. 2003;304:487–497. doi: 10.1016/S0006-291X(03)00621-1. [DOI] [PubMed] [Google Scholar]
  • [19].Constantinou C., Clemens M.J. Regulation of translation factors eIF4GI and 4E-BP1 during recovery of protein synthesis from inhibition by p53. Cell Death Differ. 2007;14:576–585. doi: 10.1038/sj.cdd.4402045. [DOI] [PubMed] [Google Scholar]
  • [20].Syrigos K.N., Harrington K.J., Pignatelli M. Role of adhesion molecules in bladder cancer: an important part of the jigsaw. Urology. 1999;53:428–434. doi: 10.1016/S0090-4295(98)00527-5. [DOI] [PubMed] [Google Scholar]
  • [21].Attisano L., Wrana J.L. Signal transduction by the TGF-β superfamily. Science. 2002;296:1646–1647. doi: 10.1126/science.1071809. [DOI] [PubMed] [Google Scholar]
  • [22].Dijke P.T., Hill C.S. New insights into TGF-beta-Smad signaling. Trends Biochem Sci. 2004;29:265–273. doi: 10.1016/j.tibs.2004.03.008. [DOI] [PubMed] [Google Scholar]
  • [23].Miller J.R., Hocking A.M., Brown J.D., Moon R.T. Mechanism and function of signal transduction by the Wnt/beta catenin and Wnt/Ca pathways. Oncogene. 1999;18:7860–7872. doi: 10.1038/sj.onc.1203245. [DOI] [PubMed] [Google Scholar]
  • [24].Ouyang X., Jessen W.J., Al-Ahmadie H., Serio A.M., Lin Y., Shih W.J., et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 2008;68:2132–2144. doi: 10.1158/0008-5472.CAN-07-6055. [DOI] [PubMed] [Google Scholar]
  • [25].Cadigan K.M., Nusse R. Wnt signaling: A common theme in animal development. Genes Dev. 1997;11:3286–3305. doi: 10.1101/gad.11.24.3286. [DOI] [PubMed] [Google Scholar]
  • [26].Garda A.L., Puelles L., Rubensteinj J.L., Medina L. Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesis. Neuroscience. 2002;113:689–698. doi: 10.1016/S0306-4522(02)00171-9. [DOI] [PubMed] [Google Scholar]
  • [27].Holst C.M., Nevsten P., Johansson F., Carlemalm E., Oredsson S.M. Subcellular distribution of spermidine/spermine N(1)-acetyltransferase. Cell Biol Int. 2008;32:39–47. doi: 10.1016/j.cellbi.2007.08.008. [DOI] [PubMed] [Google Scholar]
  • [28].Wang X., Feith D.J., Welsh P., Coleman C.S., Lopez C., Woster P.M., et al. Studies of the mechanism by which increased spermidine/ spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis. 2007;28:2404–2411. doi: 10.1093/carcin/bgm162. [DOI] [PubMed] [Google Scholar]
  • [29].Arents G., Moudrianakis E.N. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleo-roles of H2A and H2B in transcriptional repression 2551 somal DNA. Proc Natl Acad Sci U S A. 1993;90:10489–10493. doi: 10.1073/pnas.90.22.10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Ismail I.H., Hendzel M.J. The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen. 2008;49:73–82. doi: 10.1002/em.20358. [DOI] [PubMed] [Google Scholar]
  • [31].Covelo G., Sarandeses C.S., Diaz-Jullien C., Freire M. Prothymosin alpha interacts with free core histones in the nucleus of dividing cells. J Biochem. 2006;140:627–637. doi: 10.1093/jb/mvj197. [DOI] [PubMed] [Google Scholar]
  • [32].Srivastava N., Gochhait S., Gupta P., Bamezai R.N. Copy number alterations of the H2AFX gene in sporadic breast cancer patients. Cancer Genet Cytogenet. 2008;180:121–128. doi: 10.1016/j.cancergencyto.2007.09.024. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12264_2012_1242_MOESM1_ESM.zip (214.5KB, zip)

Supplementary material, approximately 214 KB.


Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES