Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Dec 7;26(6):437–444. doi: 10.1007/s12264-010-6024-4

Duplicate preconditioning with sevoflurane in vitro improves neuroprotection in rat brain via activating the extracellular signal-regulated protein kinase

离体条件下七氟醚重复预处理增强大鼠脑的神经保护

Sheng Wang 1,, Zhi-Gang Dai 1, Xi-Wei Dong 1, Su-Xiang Guo 1, Yang Liu 1, Zhi-Ping Wang 2, Yin-Ming Zeng 2
PMCID: PMC5560337  PMID: 21113194

Abstract

Objective

Sevoflurane preconditioning has been demonstrated to reduce cerebral ischemia-reperfusion (IR) injury, but the underlying mechanisms have not been fully elucidated. Besides, different protocols would usually lead to different results. The objective of this study was to determine whether dual exposure to sevoflurane improves the effect of anesthetic preconditioning against oxygen and glucose deprivation (OGD) injury in vitro.

Methods

Rat hippocampal slices under normoxic conditions (95% O2/5% CO2) were pre-exposed to sevoflurane 1, 2 and 3 minimum alveolar concentration (MAC) for 30 min, once or twice, with 15-min washout after each exposure. The slices were then subjected to 13-min OGD treatment (95% N2/5% CO2, glucose-free), followed by 30-min reoxygenation. The population spikes (PSs) were recorded in the CA1 region of rat hippocampus. The percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment was calculated, since it could indicate the recovery degree of neuronal function. In addition, to assess the role of mitogen-activated protein kinases (MAPKs) in preconditioning, U0126, an inhibitor of extracellular signal-regulated protein kinase (MEK-ERK1/2, ERK1/2 MAPK), and SB203580, an inhibitor of p38 MAPK, were separately added 10 min before sevoflurane exposure.

Results

Preconditioning once with sevoflurane 1, 2, and 3 MAC increased the percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment, from (15.13±3.79)% (control) to (31.88±5.36)%, (44.00±5.01)%, and (49.50±6.25)%, respectively, and twice preconditioning with sevoflurane 1, 2, and 3 MAC increased the percentage to (38.53±4.36)%, (50.74±7.05)% and (55.86±6.23)%, respectively. The effect of duplicate preconditioning with sevoflurane 3 MAC was blocked by U0126 [(16.23±4.62)%].

Conclusion

Sevoflurane preconditioning can induce neuroprotection against OGD injury in vitro, and preconditioning twice enhances this effect. Besides, the activation of extracellular signal-regulated protein kinase (MEK-ERK1/2, ERK1/2 MAPK) may be involved in this process.

Keywords: electrophysiology, hippocampal slice, oxygen and glucose deprivation, neuronal damage, sevoflurane preconditioning, mitogen-activated protein kinases

References

  • [1].Kapinya K.J., Löwl D., Füterer C., Maurer M., Waschke K.F., Isaev N.K., et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33:1889–1898. doi: 10.1161/01.STR.0000020092.41820.58. [DOI] [PubMed] [Google Scholar]
  • [2].Xiong L., Zheng Y., Wu M., Hou L., Zhu Z., Zhang X., et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg. 2003;96:233–237. doi: 10.1097/00000539-200301000-00047. [DOI] [PubMed] [Google Scholar]
  • [3].Engelhard K., Werner C., Reeker W., Lu H., Möllenberg O., Mielke L., et al. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth. 1999;83:415–421. doi: 10.1093/bja/83.3.415. [DOI] [PubMed] [Google Scholar]
  • [4].Wise F.L., Raizada M.K., Sumners C. Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg. 2001;93:1281–1287. doi: 10.1097/00000539-200111000-00051. [DOI] [PubMed] [Google Scholar]
  • [5].Sullivan B.L., Leu D., Taylor D.M., Fahlman C.S., Bickler P.E. Isoflurane prevents delayed cell death in an organotypic slice culture model of cerebral ischemia. Anesthesiology. 2002;96:189–195. doi: 10.1097/00000542-200201000-00033. [DOI] [PubMed] [Google Scholar]
  • [6].Zheng S., Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience. 2003;118:99–106. doi: 10.1016/S0306-4522(02)00767-4. [DOI] [PubMed] [Google Scholar]
  • [7].Zhao P., Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 2004;101:695–703. doi: 10.1097/00000542-200409000-00018. [DOI] [PubMed] [Google Scholar]
  • [8].Martin D.C., Dennison R.L., Introna R.P., Aronstam R.S. Influence of halothane on the interactions of serotonin1A and adenosine A1 receptors with G proteins in rat brain membranes. Biochem Pharmacol. 1991;42:1313–1316. doi: 10.1016/0006-2952(91)90272-7. [DOI] [PubMed] [Google Scholar]
  • [9].Tas P.W., Eisemann C., Roewer N. The volatile anesthetic isoflurane suppresses spontaneous calcium oscillations in vitro in rat hippocampal neurons by activation of adenosine A1 receptors. Neurosci Lett. 2003;338:229–232. doi: 10.1016/S0304-3940(02)01420-9. [DOI] [PubMed] [Google Scholar]
  • [10].Dahmani S., Tesnière A., Rouelle D., Desmonts J.M., Mantz J. Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated Focal Adhesion Kinase (pp125FAK) content induced by oxygen-glucose deprivation. Br J Anaesth. 2004;93:270–274. doi: 10.1093/bja/aeh188. [DOI] [PubMed] [Google Scholar]
  • [11].Zheng S., Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. Brain Res. 2005;1054:143–151. doi: 10.1016/j.brainres.2005.06.064. [DOI] [PubMed] [Google Scholar]
  • [12].Moe M.C., Berg J.J., Larsen G.A., Kampenhaug E.B., Vinje M.L. The effect of isoflurane and sevoflurane on cerebrocortical presynaptic Ca2+ and protein kinase C activity. J Neurosurg Anesthesiol. 2003;15:209–214. doi: 10.1097/00008506-200307000-00008. [DOI] [PubMed] [Google Scholar]
  • [13].Fang H., Huang Y., Zuo Z. The different responses of rat glutamate transporter type 2 and its mutant (tyrosine 403 to histidine) activity to volatile anesthetics and activation of protein kinase C. Brain Res. 2002;953:255–264. doi: 10.1016/S0006-8993(02)03299-7. [DOI] [PubMed] [Google Scholar]
  • [14].Kehl F., Payne R.S., Roewer N., Schurr A. Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res. 2004;1021:76–81. doi: 10.1016/j.brainres.2004.06.038. [DOI] [PubMed] [Google Scholar]
  • [15].Dahl N.A., Balfour W.M. Prolonged anoxic survival due to anoxia pre-exposure-brain ATP, lactate and pyruvate. Am J Physiol. 1964;207:452–456. doi: 10.1152/ajplegacy.1964.207.2.452. [DOI] [PubMed] [Google Scholar]
  • [16].Schurr A., Reid K.H., Tseng M.T., West C., Rigor B.M. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–248. doi: 10.1016/0006-8993(86)90418-X. [DOI] [PubMed] [Google Scholar]
  • [17].Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  • [18].Heurteaux C., Lauritzen I., Widmann C., Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995;92:4666–4670. doi: 10.1073/pnas.92.10.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Perez-Pinzon M.A., Born J.G. Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience. 1999;89:453–459. doi: 10.1016/S0306-4522(98)00560-0. [DOI] [PubMed] [Google Scholar]
  • [20].Riess M.L., Kevin L.G., Camara A.K., Heisner J.S., Stowe D.F. Dual exposure to sevoflurane improves anesthetic preconditioning in intact hearts. Anesthesiology. 2004;100:569–574. doi: 10.1097/00000542-200403000-00016. [DOI] [PubMed] [Google Scholar]
  • [21].Johnson G.L., Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912. doi: 10.1126/science.1072682. [DOI] [PubMed] [Google Scholar]
  • [22].Wu D.C., Ye W., Che X.M., Yang G.Y. Activation of mitogen activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab. 2000;20:1320–1330. doi: 10.1097/00004647-200009000-00007. [DOI] [PubMed] [Google Scholar]
  • [23].Zheng S., Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol. 2004;65:1172–1180. doi: 10.1124/mol.65.5.1172. [DOI] [PubMed] [Google Scholar]
  • [24].Gray J.J., Bickler P.E., Fahlman C.S., Zhan X., Schuyler J.A. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology. 2005;102:606–615. doi: 10.1097/00000542-200503000-00020. [DOI] [PubMed] [Google Scholar]
  • [25].Jiang W., Van C.J., Sheerin A.H., Ji S.P., Zhang Y., Saucier D.M., et al. Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance. J Neurosci Res. 2005;81:581–588. doi: 10.1002/jnr.20566. [DOI] [PubMed] [Google Scholar]
  • [26].Hirota K., Roth S.H. Sevoflurane modulates both GABAA and GABAB receptors in area CA1 of rat hippocampus. Br J Anaesth. 1997;78:60–65. doi: 10.1093/bja/78.1.60. [DOI] [PubMed] [Google Scholar]
  • [27].Kendig J.J., Maclver M.B., Roth S.H. Anesthetic actions in the hippocampal formation. Ann N Y Acad Sci. 1991;625:37–53. doi: 10.1111/j.1749-6632.1991.tb33828.x. [DOI] [PubMed] [Google Scholar]
  • [28].Weber A., Maier R.F., Hoffmann U., Grips M., Hoppenz M., Aktas A.G., et al. Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures. Brain Res. 2002;958:305–311. doi: 10.1016/S0006-8993(02)03604-1. [DOI] [PubMed] [Google Scholar]
  • [29].Nicole O., Ali C., Docagne F., Plawinski L., MacKenzie E.T., Vivien D., et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: Involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21:3024–3033. doi: 10.1523/JNEUROSCI.21-09-03024.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Mottet D., Michel G., Renard P., Ninane N., Raes M., Michiels C. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol. 2003;194:30–44. doi: 10.1002/jcp.10176. [DOI] [PubMed] [Google Scholar]
  • [31].Sugino T., Nozaki K., Takagi Y., Hattori I., Hashimoto N., Moriguchi T., et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci. 2000;20:4506–4514. doi: 10.1523/JNEUROSCI.20-12-04506.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].da Silva R., Grampp T., Pasch T., Schaub M.C., Zaugg M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology. 2004;100:59–69. doi: 10.1097/00000542-200401000-00013. [DOI] [PubMed] [Google Scholar]
  • [33].Tian G.F., Baker A.J. Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices. J Neurophysiol. 2000;83:1830–1839. doi: 10.1152/jn.2000.83.4.1830. [DOI] [PubMed] [Google Scholar]
  • [34].Libien J., Sacktor T.C., Kass I.S. Magnesium blocks the loss of protein kinase C, leads to a transient translocation of PKCα and PKCε, and improves recovery after anoxia in rat hippocampal slices. Mol Brain Res. 2005;136:104–111. doi: 10.1016/j.molbrainres.2005.01.005. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES