Abstract
Objective
Sevoflurane preconditioning has been demonstrated to reduce cerebral ischemia-reperfusion (IR) injury, but the underlying mechanisms have not been fully elucidated. Besides, different protocols would usually lead to different results. The objective of this study was to determine whether dual exposure to sevoflurane improves the effect of anesthetic preconditioning against oxygen and glucose deprivation (OGD) injury in vitro.
Methods
Rat hippocampal slices under normoxic conditions (95% O2/5% CO2) were pre-exposed to sevoflurane 1, 2 and 3 minimum alveolar concentration (MAC) for 30 min, once or twice, with 15-min washout after each exposure. The slices were then subjected to 13-min OGD treatment (95% N2/5% CO2, glucose-free), followed by 30-min reoxygenation. The population spikes (PSs) were recorded in the CA1 region of rat hippocampus. The percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment was calculated, since it could indicate the recovery degree of neuronal function. In addition, to assess the role of mitogen-activated protein kinases (MAPKs) in preconditioning, U0126, an inhibitor of extracellular signal-regulated protein kinase (MEK-ERK1/2, ERK1/2 MAPK), and SB203580, an inhibitor of p38 MAPK, were separately added 10 min before sevoflurane exposure.
Results
Preconditioning once with sevoflurane 1, 2, and 3 MAC increased the percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment, from (15.13±3.79)% (control) to (31.88±5.36)%, (44.00±5.01)%, and (49.50±6.25)%, respectively, and twice preconditioning with sevoflurane 1, 2, and 3 MAC increased the percentage to (38.53±4.36)%, (50.74±7.05)% and (55.86±6.23)%, respectively. The effect of duplicate preconditioning with sevoflurane 3 MAC was blocked by U0126 [(16.23±4.62)%].
Conclusion
Sevoflurane preconditioning can induce neuroprotection against OGD injury in vitro, and preconditioning twice enhances this effect. Besides, the activation of extracellular signal-regulated protein kinase (MEK-ERK1/2, ERK1/2 MAPK) may be involved in this process.
Keywords: electrophysiology, hippocampal slice, oxygen and glucose deprivation, neuronal damage, sevoflurane preconditioning, mitogen-activated protein kinases
摘要
目的
大量研究表明, 吸入麻醉药预处理可以降低脑缺血再灌注损伤, 但吸入预处理的机制还不甚清楚, 不同的给药方案可能会产生不同的效果。 本研究旨在探讨七氟醚重复预处理是否能增强单次预处理对缺氧无糖 (oxygen and glucose deprivation, OGD) 损伤大脑的保护作用及其可能的机制。
方法
大鼠海马脑片经最低肺泡有效浓度 (minimum alveolar concentration, MAC) 为1、 2 和 3 的七氟醚单次或双次预处理 (每次持续30 min), 每次预处理后冲洗15 min, 然后进行 13 min OGD 损伤, 再复氧供糖30 min。 在这些过程中记录 CA1 区群峰电位 (population spikes, PSs), 损伤后PS 的恢复程度代表神经功能的恢复程度。 为研究丝裂原活化蛋白激酶 (mitogen-activated protein kinases, MAPKs) 在七氟醚预处理中的作用, 在七氟醚预处理前 10 min 加入细胞外信号调节蛋白激酶 (extracellular signal-regulated protein kinase, MEK-ERK1/2) 抑制剂 U0126 和 p38 MAPK抑制剂 SB203580。
结果
1 MAC、 2 MAC 和 3 MAC 七氟醚单次预处理后, 神经功能的恢复程度分别为 (31.88±5.36)%、 (44.00±5.01)% 和 (49.50±6.25)%, 对照组为 (15.13±3.79)%; 1 MAC、 2 MAC和 3 MAC 七氟醚双次预处理后, 神经功能的恢复程度分别为 (38.53±4.36)%、 (50.74±7.05)% 和 (55.86±6.23)%。 此外, U0126 能抑制 3 MAC 七氟醚双次预处理的保护作用 [(18.5±5.23)% vs (55.86±6.23)%]。
结论
以上结果提示, 七氟醚预处理具有神经保护作用, 且七氟醚重复预处理诱导的神经保护作用强于单次预处理的神经保护作用。 此外, MEK-ERK1/2 的活化参与了七氟醚预处理对 OGD 损伤大脑的保护作用。
关键词: 电生理, 海马脑片, 缺氧无糖, 神经损伤, 七氟醚预处理, 丝裂原活化蛋白激酶
References
- [1].Kapinya K.J., Löwl D., Füterer C., Maurer M., Waschke K.F., Isaev N.K., et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33:1889–1898. doi: 10.1161/01.STR.0000020092.41820.58. [DOI] [PubMed] [Google Scholar]
- [2].Xiong L., Zheng Y., Wu M., Hou L., Zhu Z., Zhang X., et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg. 2003;96:233–237. doi: 10.1097/00000539-200301000-00047. [DOI] [PubMed] [Google Scholar]
- [3].Engelhard K., Werner C., Reeker W., Lu H., Möllenberg O., Mielke L., et al. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth. 1999;83:415–421. doi: 10.1093/bja/83.3.415. [DOI] [PubMed] [Google Scholar]
- [4].Wise F.L., Raizada M.K., Sumners C. Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg. 2001;93:1281–1287. doi: 10.1097/00000539-200111000-00051. [DOI] [PubMed] [Google Scholar]
- [5].Sullivan B.L., Leu D., Taylor D.M., Fahlman C.S., Bickler P.E. Isoflurane prevents delayed cell death in an organotypic slice culture model of cerebral ischemia. Anesthesiology. 2002;96:189–195. doi: 10.1097/00000542-200201000-00033. [DOI] [PubMed] [Google Scholar]
- [6].Zheng S., Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience. 2003;118:99–106. doi: 10.1016/S0306-4522(02)00767-4. [DOI] [PubMed] [Google Scholar]
- [7].Zhao P., Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 2004;101:695–703. doi: 10.1097/00000542-200409000-00018. [DOI] [PubMed] [Google Scholar]
- [8].Martin D.C., Dennison R.L., Introna R.P., Aronstam R.S. Influence of halothane on the interactions of serotonin1A and adenosine A1 receptors with G proteins in rat brain membranes. Biochem Pharmacol. 1991;42:1313–1316. doi: 10.1016/0006-2952(91)90272-7. [DOI] [PubMed] [Google Scholar]
- [9].Tas P.W., Eisemann C., Roewer N. The volatile anesthetic isoflurane suppresses spontaneous calcium oscillations in vitro in rat hippocampal neurons by activation of adenosine A1 receptors. Neurosci Lett. 2003;338:229–232. doi: 10.1016/S0304-3940(02)01420-9. [DOI] [PubMed] [Google Scholar]
- [10].Dahmani S., Tesnière A., Rouelle D., Desmonts J.M., Mantz J. Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated Focal Adhesion Kinase (pp125FAK) content induced by oxygen-glucose deprivation. Br J Anaesth. 2004;93:270–274. doi: 10.1093/bja/aeh188. [DOI] [PubMed] [Google Scholar]
- [11].Zheng S., Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. Brain Res. 2005;1054:143–151. doi: 10.1016/j.brainres.2005.06.064. [DOI] [PubMed] [Google Scholar]
- [12].Moe M.C., Berg J.J., Larsen G.A., Kampenhaug E.B., Vinje M.L. The effect of isoflurane and sevoflurane on cerebrocortical presynaptic Ca2+ and protein kinase C activity. J Neurosurg Anesthesiol. 2003;15:209–214. doi: 10.1097/00008506-200307000-00008. [DOI] [PubMed] [Google Scholar]
- [13].Fang H., Huang Y., Zuo Z. The different responses of rat glutamate transporter type 2 and its mutant (tyrosine 403 to histidine) activity to volatile anesthetics and activation of protein kinase C. Brain Res. 2002;953:255–264. doi: 10.1016/S0006-8993(02)03299-7. [DOI] [PubMed] [Google Scholar]
- [14].Kehl F., Payne R.S., Roewer N., Schurr A. Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res. 2004;1021:76–81. doi: 10.1016/j.brainres.2004.06.038. [DOI] [PubMed] [Google Scholar]
- [15].Dahl N.A., Balfour W.M. Prolonged anoxic survival due to anoxia pre-exposure-brain ATP, lactate and pyruvate. Am J Physiol. 1964;207:452–456. doi: 10.1152/ajplegacy.1964.207.2.452. [DOI] [PubMed] [Google Scholar]
- [16].Schurr A., Reid K.H., Tseng M.T., West C., Rigor B.M. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–248. doi: 10.1016/0006-8993(86)90418-X. [DOI] [PubMed] [Google Scholar]
- [17].Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
- [18].Heurteaux C., Lauritzen I., Widmann C., Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995;92:4666–4670. doi: 10.1073/pnas.92.10.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Perez-Pinzon M.A., Born J.G. Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience. 1999;89:453–459. doi: 10.1016/S0306-4522(98)00560-0. [DOI] [PubMed] [Google Scholar]
- [20].Riess M.L., Kevin L.G., Camara A.K., Heisner J.S., Stowe D.F. Dual exposure to sevoflurane improves anesthetic preconditioning in intact hearts. Anesthesiology. 2004;100:569–574. doi: 10.1097/00000542-200403000-00016. [DOI] [PubMed] [Google Scholar]
- [21].Johnson G.L., Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912. doi: 10.1126/science.1072682. [DOI] [PubMed] [Google Scholar]
- [22].Wu D.C., Ye W., Che X.M., Yang G.Y. Activation of mitogen activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab. 2000;20:1320–1330. doi: 10.1097/00004647-200009000-00007. [DOI] [PubMed] [Google Scholar]
- [23].Zheng S., Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol. 2004;65:1172–1180. doi: 10.1124/mol.65.5.1172. [DOI] [PubMed] [Google Scholar]
- [24].Gray J.J., Bickler P.E., Fahlman C.S., Zhan X., Schuyler J.A. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology. 2005;102:606–615. doi: 10.1097/00000542-200503000-00020. [DOI] [PubMed] [Google Scholar]
- [25].Jiang W., Van C.J., Sheerin A.H., Ji S.P., Zhang Y., Saucier D.M., et al. Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance. J Neurosci Res. 2005;81:581–588. doi: 10.1002/jnr.20566. [DOI] [PubMed] [Google Scholar]
- [26].Hirota K., Roth S.H. Sevoflurane modulates both GABAA and GABAB receptors in area CA1 of rat hippocampus. Br J Anaesth. 1997;78:60–65. doi: 10.1093/bja/78.1.60. [DOI] [PubMed] [Google Scholar]
- [27].Kendig J.J., Maclver M.B., Roth S.H. Anesthetic actions in the hippocampal formation. Ann N Y Acad Sci. 1991;625:37–53. doi: 10.1111/j.1749-6632.1991.tb33828.x. [DOI] [PubMed] [Google Scholar]
- [28].Weber A., Maier R.F., Hoffmann U., Grips M., Hoppenz M., Aktas A.G., et al. Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures. Brain Res. 2002;958:305–311. doi: 10.1016/S0006-8993(02)03604-1. [DOI] [PubMed] [Google Scholar]
- [29].Nicole O., Ali C., Docagne F., Plawinski L., MacKenzie E.T., Vivien D., et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: Involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21:3024–3033. doi: 10.1523/JNEUROSCI.21-09-03024.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Mottet D., Michel G., Renard P., Ninane N., Raes M., Michiels C. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol. 2003;194:30–44. doi: 10.1002/jcp.10176. [DOI] [PubMed] [Google Scholar]
- [31].Sugino T., Nozaki K., Takagi Y., Hattori I., Hashimoto N., Moriguchi T., et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci. 2000;20:4506–4514. doi: 10.1523/JNEUROSCI.20-12-04506.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].da Silva R., Grampp T., Pasch T., Schaub M.C., Zaugg M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology. 2004;100:59–69. doi: 10.1097/00000542-200401000-00013. [DOI] [PubMed] [Google Scholar]
- [33].Tian G.F., Baker A.J. Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices. J Neurophysiol. 2000;83:1830–1839. doi: 10.1152/jn.2000.83.4.1830. [DOI] [PubMed] [Google Scholar]
- [34].Libien J., Sacktor T.C., Kass I.S. Magnesium blocks the loss of protein kinase C, leads to a transient translocation of PKCα and PKCε, and improves recovery after anoxia in rat hippocampal slices. Mol Brain Res. 2005;136:104–111. doi: 10.1016/j.molbrainres.2005.01.005. [DOI] [PubMed] [Google Scholar]
