Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Apr 6;27(2):99–106. doi: 10.1007/s12264-011-1149-7

Aqueous extract of lavender (Lavandula angustifolia) improves the spatial performance of a rat model of Alzheimer’s disease

薰衣草水提取物能改善阿尔茨海默大鼠的空间学习和记忆能力

Masoud Soheili Kashani 1, Mostafa Rezaei Tavirani 1, Sayyed Alireza Talaei 2, Mahmoud Salami 2,
PMCID: PMC5560344  PMID: 21441971

Abstract

Objective

Alzheimer’s disease (AD) is one of the most important neurodegenerative disorders. It is characterized by dementia including deficits in learning and memory. The present study aimed to evaluate the effects of aqueous extract of lavender (Lavandula angustifolia) on spatial performance of AD rats.

Methods

Male Wistar rats were first divided into control and AD groups. Rat model of AD was established by intracerebroventricular injection of 10 μg Aβ1–42 20 d prior to administration of the lavender extract. Rats in both groups were then introduced to 2 stages of task learning (with an interval of 20 d) in Morris water maze, each followed by one probe test. After the first stage of spatial learning, control and AD animals received different doses (50, 100 and 200 mg/kg) of the lavender extract.

Results

In the first stage of experiment, the latency to locate the hidden platform in AD group was significantly higher than that in control group. However, in the second stage of experiment, control and AD rats that received distilled water (vehicle) showed similar performance, indicating that the maze navigation itself could improve the spatial learning of AD animals. Besides, in the second stage of experiment, control and AD rats that received lavender extract administration at different doses (50, 100, and 200 mg/kg) spent less time locating the platform (except for the AD rats with 50 mg/kg extract treatment), as compared with their counterparts with vehicle treatment, respectively. In addition, lavender extract significantly improved the performance of control and AD rats in the probe test, only at the dose of 200 mg/kg, as compared with their counterparts with vehicle treatment.

Conclusion

The lavender extract can effectively reverse spatial learning deficits in AD rats.

Keywords: Alzheimer’s disease, Lavandula angustifolia, spatial learning, rat, water maze

References

  • [1].Fodale V., Quattrone D., Trecroci C., Caminiti V., Santamaria L. B. Alzheimer’s disease and anaesthesia: implications for the central cholinergic system. Br J Anaesth. 2006;97(4):445–452. doi: 10.1093/bja/ael233. [DOI] [PubMed] [Google Scholar]
  • [2].Morrissette D.A., Parachikova A., Green K.N., LaFerla F.M. Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem. 2009;284(10):6033–6037. doi: 10.1074/jbc.R800030200. [DOI] [PubMed] [Google Scholar]
  • [3].Gatz M., Reynolds C.A., Fratiglioni L., Johansson B., Mortimer J.A., Berg S., et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–174. doi: 10.1001/archpsyc.63.2.168. [DOI] [PubMed] [Google Scholar]
  • [4].Selkoe D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–766. doi: 10.1152/physrev.2001.81.2.741. [DOI] [PubMed] [Google Scholar]
  • [5].Iqbal K., Alonso Adel C., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739(2–3):198–210. doi: 10.1016/j.bbadis.2004.09.008. [DOI] [PubMed] [Google Scholar]
  • [6].Kosik K.S., Joachim C.L., Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986;83(11):4044–4048. doi: 10.1073/pnas.83.11.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Howlett D.R., Simmons D.L., Dingwall C., Christie G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 2000;23(11):565–570. doi: 10.1016/S0166-2236(00)01647-7. [DOI] [PubMed] [Google Scholar]
  • [8].Tuppo E.E., Arias H.R. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37(2):289–305. doi: 10.1016/j.biocel.2004.07.009. [DOI] [PubMed] [Google Scholar]
  • [9].Dheen S.T., Kaur C., Ling E.A. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14(11):1189–1197. doi: 10.2174/092986707780597961. [DOI] [PubMed] [Google Scholar]
  • [10].Strohmeyer R., Rogers J. Molecular and cellular mediators of Alzheimer’s disease inflammation. J Alzheimers Dis. 2001;3(1):131–157. doi: 10.3233/jad-2001-3118. [DOI] [PubMed] [Google Scholar]
  • [11].Lahiri D.K., Farlow M.R., Greig N.H., Sambamurti K. Current drug targets for Alzheimer’s disease treatment. Drug Dev Res. 2002;56(3):267–281. doi: 10.1002/ddr.10081. [DOI] [Google Scholar]
  • [12].Bourin M., Ripoll N., Dailly E. Nicotinic receptors and Alzheimer’s disease. Curr Med Res Opin. 2003;19(3):169–177. doi: 10.1185/030079903125001631. [DOI] [PubMed] [Google Scholar]
  • [13].Abeliovich A., Paylor R., Chen C., Kim J.J., Wehner J.M., Tonegawa S. PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell. 1993;75(7):1263–1271. doi: 10.1016/0092-8674(93)90614-V. [DOI] [PubMed] [Google Scholar]
  • [14].Celone K.A., Calhoun V.D., Dickerson B.C., Atri A., Chua E.F., Miller S.L., et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. J Neurosci. 2006;26(40):10222–10231. doi: 10.1523/JNEUROSCI.2250-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J Neurosci Res. 2009;87(8):1729–1736. doi: 10.1002/jnr.21998. [DOI] [PubMed] [Google Scholar]
  • [16].Omidbaigi R. Production and processing of medicinal plants. Astane Ghods Publications. 2000;3:106–122. [Google Scholar]
  • [17].Akhondzadeh S., Kashani L., Fotouhi A., Jarvandi S., Mobaseri M., Moin M., et al. Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: a double-blind, randomized trial. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):123–127. doi: 10.1016/S0278-5846(02)00342-1. [DOI] [PubMed] [Google Scholar]
  • [18].Kim H.M., Cho S.H. Lavender oil inhibits immediate-type allergic reaction in mice and rats. J Pharm Pharmacol. 1999;51(2):221–226. doi: 10.1211/0022357991772178. [DOI] [PubMed] [Google Scholar]
  • [19].Adsersen A., Gauguin B., Gudiksen L., Jager A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2006;104(3):418–422. doi: 10.1016/j.jep.2005.09.032. [DOI] [PubMed] [Google Scholar]
  • [20].Hajhashemi V., Ghannadi A., Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol. 2003;89(1):67–71. doi: 10.1016/S0378-8741(03)00234-4. [DOI] [PubMed] [Google Scholar]
  • [21].Lin P.W., Chan W.C., Ng B.F., Lam L.C. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: a cross-over randomized trial. Int J Geriatr Psychiatry. 2007;22(5):405–410. doi: 10.1002/gps.1688. [DOI] [PubMed] [Google Scholar]
  • [22].Wilcock D.M., Gordon M.N., Morgan D. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protocols. 2006;1(3):1591–1595. doi: 10.1038/nprot.2006.277. [DOI] [PubMed] [Google Scholar]
  • [23].Lustig C., Snyder A.Z., Bhakta M., O’Brien K.C., McAvoy M., Raichle M.E., et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–14509. doi: 10.1073/pnas.2235925100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Friedland R.P., Fritsch T., Smyth K.A., Koss E., Lerner A.J., Chen C.H., et al. Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci U S A. 2001;98(6):3440–3445. doi: 10.1073/pnas.061002998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Smyth K.A., Fritsch T., Cook T.B., McClendon M.J., Santillan C.E., Friedland R.P. Worker functions and traits associated with occupations and the development of AD. Neurology. 2004;63(3):498–503. doi: 10.1212/01.wnl.0000133007.87028.09. [DOI] [PubMed] [Google Scholar]
  • [26].Letenneur L., Gilleron V., Commenges D., Helmer C., Orgogozo J.M., Dartigues J.F. Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry. 1999;66(2):177–183. doi: 10.1136/jnnp.66.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Cracchiolo J.R., Mori T., Nazian S.J., Tan J., Potter H., Arendash G.W. Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem. 2007;88(3):277–294. doi: 10.1016/j.nlm.2007.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Inestrosa N.C., Alvarez A., P’erez C.A., Moreno R.D., Vicente M., Linker C., et al. Acetylcholinesterase accelerates assembly of amyloid-[beta]-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881–891. doi: 10.1016/S0896-6273(00)80108-7. [DOI] [PubMed] [Google Scholar]
  • [29].Perry N., Court G., Bidet N., Court J., Perry E. European herbs with cholinergic activities: potential in dementia therapy. Int J Geriatr Psychiatry. 1996;11(12):1063–1069. doi: 10.1002/(SICI)1099-1166(199612)11:12<1063::AID-GPS532>3.0.CO;2-1. [DOI] [Google Scholar]
  • [30].Koh J.Y., Yang L.L., Cotman C.W. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 1990;533(2):315–320. doi: 10.1016/0006-8993(90)91355-K. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES