Abstract
Objective
Alzheimer’s disease (AD) is one of the most important neurodegenerative disorders. It is characterized by dementia including deficits in learning and memory. The present study aimed to evaluate the effects of aqueous extract of lavender (Lavandula angustifolia) on spatial performance of AD rats.
Methods
Male Wistar rats were first divided into control and AD groups. Rat model of AD was established by intracerebroventricular injection of 10 μg Aβ1–42 20 d prior to administration of the lavender extract. Rats in both groups were then introduced to 2 stages of task learning (with an interval of 20 d) in Morris water maze, each followed by one probe test. After the first stage of spatial learning, control and AD animals received different doses (50, 100 and 200 mg/kg) of the lavender extract.
Results
In the first stage of experiment, the latency to locate the hidden platform in AD group was significantly higher than that in control group. However, in the second stage of experiment, control and AD rats that received distilled water (vehicle) showed similar performance, indicating that the maze navigation itself could improve the spatial learning of AD animals. Besides, in the second stage of experiment, control and AD rats that received lavender extract administration at different doses (50, 100, and 200 mg/kg) spent less time locating the platform (except for the AD rats with 50 mg/kg extract treatment), as compared with their counterparts with vehicle treatment, respectively. In addition, lavender extract significantly improved the performance of control and AD rats in the probe test, only at the dose of 200 mg/kg, as compared with their counterparts with vehicle treatment.
Conclusion
The lavender extract can effectively reverse spatial learning deficits in AD rats.
Keywords: Alzheimer’s disease, Lavandula angustifolia, spatial learning, rat, water maze
摘要
目的
阿尔茨海默病(Alzheimer’s disease, AD)是主要的神经退行性疾病之一, 其特征主要表现为痴呆, 包括学习与记忆的衰退。 本研究旨在探索薰衣草(唇形科, 薰衣草属)水提取物对AD大鼠空间学习和记忆的影响。
方法
Wistar大鼠分为对照组和AD 组, 通过给大鼠脑室注射10 μg Aβ1–42 建立AD模型。 20天后, 两组大鼠进行为期 5天的水迷宫空间记忆采集实验(每天4次), 紧接着进行一次空间探索实验。 实验结束后, 分别给予AD组和对照组大鼠不同剂量的薰衣草水提取物(50、 100、 200 mg/kg) 或 0.4 mL/kg 蒸馏水, 每天一次共20天。 随后, 重复上述水迷宫实验。
结果
在水迷宫实验的第一阶段, AD组大鼠找到平台的潜伏期显著高于对照组大鼠, 而在第二阶段, 接受蒸馏水注射的对照和AD大鼠找到平台的潜伏期没有差异, 说明水迷宫运动本身能提高AD大鼠的空间学习能力。 在第二阶段空间记忆采集实验中, 与接受蒸馏水注射的同类大鼠相比, 接受薰衣草水提取物注射的对照和AD大鼠找到平台的潜伏期显著降低。 此外, 200 mg/kg 薰衣草水提取物能显著提高对照和AD大鼠的空间探索能力。
结论
薰衣草水提取物能有效逆转AD 大鼠空间学习功能的损伤。
关键词: 阿尔茨海默病, 唇形科薰衣草属, 空间学习, 大鼠, 水迷宫
References
- [1].Fodale V., Quattrone D., Trecroci C., Caminiti V., Santamaria L. B. Alzheimer’s disease and anaesthesia: implications for the central cholinergic system. Br J Anaesth. 2006;97(4):445–452. doi: 10.1093/bja/ael233. [DOI] [PubMed] [Google Scholar]
- [2].Morrissette D.A., Parachikova A., Green K.N., LaFerla F.M. Relevance of transgenic mouse models to human Alzheimer disease. J Biol Chem. 2009;284(10):6033–6037. doi: 10.1074/jbc.R800030200. [DOI] [PubMed] [Google Scholar]
- [3].Gatz M., Reynolds C.A., Fratiglioni L., Johansson B., Mortimer J.A., Berg S., et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–174. doi: 10.1001/archpsyc.63.2.168. [DOI] [PubMed] [Google Scholar]
- [4].Selkoe D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–766. doi: 10.1152/physrev.2001.81.2.741. [DOI] [PubMed] [Google Scholar]
- [5].Iqbal K., Alonso Adel C., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739(2–3):198–210. doi: 10.1016/j.bbadis.2004.09.008. [DOI] [PubMed] [Google Scholar]
- [6].Kosik K.S., Joachim C.L., Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986;83(11):4044–4048. doi: 10.1073/pnas.83.11.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Howlett D.R., Simmons D.L., Dingwall C., Christie G. In search of an enzyme: the beta-secretase of Alzheimer’s disease is an aspartic proteinase. Trends Neurosci. 2000;23(11):565–570. doi: 10.1016/S0166-2236(00)01647-7. [DOI] [PubMed] [Google Scholar]
- [8].Tuppo E.E., Arias H.R. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37(2):289–305. doi: 10.1016/j.biocel.2004.07.009. [DOI] [PubMed] [Google Scholar]
- [9].Dheen S.T., Kaur C., Ling E.A. Microglial activation and its implications in the brain diseases. Curr Med Chem. 2007;14(11):1189–1197. doi: 10.2174/092986707780597961. [DOI] [PubMed] [Google Scholar]
- [10].Strohmeyer R., Rogers J. Molecular and cellular mediators of Alzheimer’s disease inflammation. J Alzheimers Dis. 2001;3(1):131–157. doi: 10.3233/jad-2001-3118. [DOI] [PubMed] [Google Scholar]
- [11].Lahiri D.K., Farlow M.R., Greig N.H., Sambamurti K. Current drug targets for Alzheimer’s disease treatment. Drug Dev Res. 2002;56(3):267–281. doi: 10.1002/ddr.10081. [DOI] [Google Scholar]
- [12].Bourin M., Ripoll N., Dailly E. Nicotinic receptors and Alzheimer’s disease. Curr Med Res Opin. 2003;19(3):169–177. doi: 10.1185/030079903125001631. [DOI] [PubMed] [Google Scholar]
- [13].Abeliovich A., Paylor R., Chen C., Kim J.J., Wehner J.M., Tonegawa S. PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell. 1993;75(7):1263–1271. doi: 10.1016/0092-8674(93)90614-V. [DOI] [PubMed] [Google Scholar]
- [14].Celone K.A., Calhoun V.D., Dickerson B.C., Atri A., Chua E.F., Miller S.L., et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. J Neurosci. 2006;26(40):10222–10231. doi: 10.1523/JNEUROSCI.2250-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J Neurosci Res. 2009;87(8):1729–1736. doi: 10.1002/jnr.21998. [DOI] [PubMed] [Google Scholar]
- [16].Omidbaigi R. Production and processing of medicinal plants. Astane Ghods Publications. 2000;3:106–122. [Google Scholar]
- [17].Akhondzadeh S., Kashani L., Fotouhi A., Jarvandi S., Mobaseri M., Moin M., et al. Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: a double-blind, randomized trial. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):123–127. doi: 10.1016/S0278-5846(02)00342-1. [DOI] [PubMed] [Google Scholar]
- [18].Kim H.M., Cho S.H. Lavender oil inhibits immediate-type allergic reaction in mice and rats. J Pharm Pharmacol. 1999;51(2):221–226. doi: 10.1211/0022357991772178. [DOI] [PubMed] [Google Scholar]
- [19].Adsersen A., Gauguin B., Gudiksen L., Jager A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2006;104(3):418–422. doi: 10.1016/j.jep.2005.09.032. [DOI] [PubMed] [Google Scholar]
- [20].Hajhashemi V., Ghannadi A., Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol. 2003;89(1):67–71. doi: 10.1016/S0378-8741(03)00234-4. [DOI] [PubMed] [Google Scholar]
- [21].Lin P.W., Chan W.C., Ng B.F., Lam L.C. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: a cross-over randomized trial. Int J Geriatr Psychiatry. 2007;22(5):405–410. doi: 10.1002/gps.1688. [DOI] [PubMed] [Google Scholar]
- [22].Wilcock D.M., Gordon M.N., Morgan D. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protocols. 2006;1(3):1591–1595. doi: 10.1038/nprot.2006.277. [DOI] [PubMed] [Google Scholar]
- [23].Lustig C., Snyder A.Z., Bhakta M., O’Brien K.C., McAvoy M., Raichle M.E., et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–14509. doi: 10.1073/pnas.2235925100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Friedland R.P., Fritsch T., Smyth K.A., Koss E., Lerner A.J., Chen C.H., et al. Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci U S A. 2001;98(6):3440–3445. doi: 10.1073/pnas.061002998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Smyth K.A., Fritsch T., Cook T.B., McClendon M.J., Santillan C.E., Friedland R.P. Worker functions and traits associated with occupations and the development of AD. Neurology. 2004;63(3):498–503. doi: 10.1212/01.wnl.0000133007.87028.09. [DOI] [PubMed] [Google Scholar]
- [26].Letenneur L., Gilleron V., Commenges D., Helmer C., Orgogozo J.M., Dartigues J.F. Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry. 1999;66(2):177–183. doi: 10.1136/jnnp.66.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Cracchiolo J.R., Mori T., Nazian S.J., Tan J., Potter H., Arendash G.W. Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem. 2007;88(3):277–294. doi: 10.1016/j.nlm.2007.07.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Inestrosa N.C., Alvarez A., P’erez C.A., Moreno R.D., Vicente M., Linker C., et al. Acetylcholinesterase accelerates assembly of amyloid-[beta]-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881–891. doi: 10.1016/S0896-6273(00)80108-7. [DOI] [PubMed] [Google Scholar]
- [29].Perry N., Court G., Bidet N., Court J., Perry E. European herbs with cholinergic activities: potential in dementia therapy. Int J Geriatr Psychiatry. 1996;11(12):1063–1069. doi: 10.1002/(SICI)1099-1166(199612)11:12<1063::AID-GPS532>3.0.CO;2-1. [DOI] [Google Scholar]
- [30].Koh J.Y., Yang L.L., Cotman C.W. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 1990;533(2):315–320. doi: 10.1016/0006-8993(90)91355-K. [DOI] [PubMed] [Google Scholar]